| 研究生: |
李汶洛 Wen-luo Li |
|---|---|
| 論文名稱: |
串接耦合量子點在線性與非線性響應的傳輸及熱電行為之探討 The study of charge transport and thermoelectrical properties of serially coupled quantum dots in the linear and nonlinear responses |
| 指導教授: |
郭明庭
Ming-ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 量子點 、熱電 、自旋阻斷 、席貝克係數 |
| 外文關鍵詞: | quantum dot, thermoelectric, spin blockade, Seebeck coefficient |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討串接耦合量子點連接金屬電極在線性與非線性響應區域間的傳輸及熱電特性。我們使用延展的哈伯模型和安德森模型來描述串接耦合量子點接面系統之電子總能,並藉由凱帝旭格林函數的技術得到流經串接耦合量子點接面的穿隧電流和熱流。在包利自旋阻斷條件下,我們研究串接耦合量子點的電流整流和負微分電導之行為。除此之外,在線性響應區,我們亦分析電導和席貝克係數。我們觀察到電導的非熱增寬現象和透過席貝克係數的變化可分辨量子點內電子自旋組態,驗證了串接耦合量子點系統可同時作為一個自旋過濾器和低溫電流過濾器。最後,我們討論了以兩端金屬電極溫差來驅動串接耦合量子點接面穿隧電流的機制,並且發現到與量子點能階高低相依的熱電流之非線性傳輸行為。
We theoretically study the charge transport and thermoelectric properties of a serially coupled quantum dots (SCQDs) connected to the metallic electrodes in the linear and nonlinear response regimes by the extended Hubbard model and Anderson model. The charge and heat currents of SCQDs are calculated by the Keldysh-Green function technique. We investigate the current rectification and negative differential conductance of SCQDs under the Pauli spin blockade (PSB) condition in the nonlinear response regime. The nonthermal broadening effect of tunneling current in the PSB process is observed. This demonstrates that SCQDs can act as spin filters and low-temperature current filters simultaneously. In the linear response regime, the electrical conductance and Seebeck coefficient (S) are also analyzed. The temperature-dependent S can reveal the spin configuration by examining the sign change of S. Finally, we have investigated the tunneling current of SCQDs driven by a temperature bias and observed the nonlinear thermal currents which depend on the QD energy levels .
[1] A. F. Ioffe, Semiconductor thermoelements, and Thermoelectric cooling, Infosearch Limited, London, (1957).
[2] G. Grosso, G.P. Parravicini, Solid State Physics, Academic Press, Amsterdam, (2000).
[3] P. Reddy, S. Y. Jang, R. A. Segalman and A. Majumdar, “Thermoelectricity in Molecular Junctions”, Science 315, 1568 (2007).
[4] Z. Wang, J.A. Carter,A. Lagutchev, Y.K. Koh, N.-H. Seong, D.G. Cahill, D.D. Dlott, “Ultrafast flash thermal conductance of molecular chains” , Science 317, 787 (2007).
[5] Y. M. Lin and M. S. Dresselhaus , “Thermoelectric properties of superlattice nanowires ”, Phys. Rev. B 68, 075304 (2003).
[6] G.D. Mahan, J.O. Sofo, “The best thermoelectric ”, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).
[7] R. Scheibner, H. Buchmann, D. Reuter, M.N. Kiselev, L.W. Molenkamp, “Thermopower of a Kondo Spin-Correlated Quantum Dot”, Phys. Rev. Lett. 95, 176602 (2005).
[8] T.A. Costi, V. Zlatic, “ Thermoelectric transport through strongly correlated quantum dots”, Phys. Rev. B 81, 235127 (2010).
[9] M. Tsaousidou, G.P. Triberis, “Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency”, J. Phys. Condens. Matter 22, 355304 (2010).
[10] M. L. Ladron de Guevara, F. Claro, and P. A. Orellana, “Ghost Fano resonance in a double quantum dot molecule attached to leads”, Phys. Rev. B 67, 195335 (2003).
[11] R. Franco, J. SilvaValencia, and M. S. Figueira, “Thermopower and thermal conductance through parallel coupled quantum dots”, J. Appl. Phys. 103, 07B726 (2008).
[12] David M.-T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[13] Q. F. Sun, Y. Xing, and S. Q. Shen, “Double quantum dot as detector of spin bias”, Phys. Rev. B 77, 195313 (2008).
[14] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an interacting electron region”, Phys. Rev. Lett. 68, 2512 (1992).
[15] D. M. T. Kuo and Y.-C. Chang, “Thermoelectric Properties of a Semiconductor Quantum Dot Chain Connected to Metallic Electrodes”, arXiv:1209.0506(2012).
[16] D. M. T. Kuo and Y.-C. Chang, “Tunneling Current Spectroscopy of a Nanostructure Junction Involving Multiple Energy Levels”, Phys. Rev. Lett. 99, 086803 (2007).
[17] E. Velmre, “Thomas Johann Seebeck and his contribution to the modern science and technology”, Electronics Conference (BEC), 2010 12th Biennial Baltic, Tallinn (2010).
[18] D. M. T. Kuo and Y. C. Chang, “Bipolar thermoelectric effect in a serially coupled quantum dot system ”, Jpn. J. Appl. Phys. 50, 105003 (2011).
[19] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, “Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System” ,Science 297,1313 (2002).
[20] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, “Electron transport through double quantum dots”, Rev. Mod. Phys.75, 1(2002).
[21] Sofia Fahlvik Svensson, Eric A Hoffmann, “Nonlinear thermovoltage and thermocurrent in quantum dots”, New J. Phys.15, 105011 (2013).
[22] Miguel A. Sierra, David Sanchez, “Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots” , Phys. Rev. B 90, 115313 (2014).