| 研究生: |
何明靜 Ming-Jing He |
|---|---|
| 論文名稱: |
應用聚乳酸塑膠於聚乳酸-蘋果酸膠體共聚物之低溫永續製程 Low-temperature sustainable synthesis of poly (L-lactic acid-co-L-malic acid) gel copolymer from PLA plastics and bio-malate |
| 指導教授: |
王柏翔
Po-Hsiang Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 聚乳酸 、永續生產 、增值產物 、共聚物 |
| 外文關鍵詞: | polylactic acid, sustainable production, value-added products, copolymers |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
塑膠製成商品已成為當代生活中不可或缺的一部分,全球每年生產的塑膠高達4億噸。隨著環保意識的抬頭,人們開始追求標榜「生物可分解」的塑膠,其中聚乳酸 (Polylactic acid, PLA)塑膠就是一個例子。由於PLA的分解條件特殊,目前處理方式多為焚化。然而,焚燒處理除了意味著能源消耗,還會導致二氧化碳的排放,加劇溫室效應。為了解決廢棄塑膠PLA問題,本研究旨在利用酵素將PLA水解為乳酸 (Lactic acid, LA),乳酸具有無毒、生物可分解、生物相容性的特性,可為醫療/醫美用途的原料,然而當用作藥物載體時,PLA的高結晶度會導致降解速度緩慢,導致藥物釋放延遲,但若與天然的有機酸—L-蘋果酸 (L-malic acid, L-MA)進行縮合形成聚乳酸-蘋果酸 (Poly (L-lactic acid-co-L-malic acid), PMALA)之共聚物,具有較高的水解效率,且相較於PLA更具疏水的特性,有助於成載藥物,因此PMALA被評價為潛在的抗腫瘤藥物載體、生物製藥和組織再生的載體基質,提高了產品的應用性和價值。
目前約有30%的聚乳酸產品都是通過石化工業提煉而成,以焚化或是掩埋的方式處理對於石化資源而言是浪費的,考量到資源的有限性,勢必得對其進行原物料回收。本研究為塑膠廢棄物問題提供了一個具有潛力的解決方案,透過以酵素Proteinase K水解PLA的方式對LA進行回收,其LA回收效率可達本研究所使用之鹼解效率之60–80%,研究中以廢棄的PLA作為LA來源,並於大氣壓力與溫度80℃下,將其轉化為具有醫療價值的PMALA膠體共聚物,相較於傳統的共聚物的製成需要在真空或減壓且溫度高於110℃以上進行聚合,本研究顯示PMALA能夠在80℃下執行聚合反應,意味著其將有機會依靠地熱系統進行合成,不僅可於相對低溫下運行達到節能的效果外,還替廢棄物PLA進行加值化,更符合現今聯合國所提倡SDGs中的第12項指標「Responsible Consumption and Production」。
Plastic products have become an indispensable part of contemporary life, with global plastic production reaching up to 400 million tons annually. As environmental awareness rises, people are beginning to seek "biodegradable" plastics, with polylactic acid (PLA) being a notable example. Due to the specific conditions required for PLA degradation, incineration is currently the primary disposal method. However, incineration not only consumes energy but also releases carbon dioxide, exacerbating the greenhouse effect. To address the issue of PLA plastic waste, this study aims to use enzymes to hydrolyze PLA into lactic acid (LA). Lactic acid is non-toxic, biodegradable, and biocompatible, making it a suitable material for medical and cosmetic applications. However, when used as a drug carrier, PLA's high crystallinity leads to slow degradation and delayed drug release. By condensing PLA with the natural organic acid L-malic acid (L-MA) to form the copolymer poly (L-lactic acid-co-L-malic acid) (PMALA), the hydrolysis efficiency is increased, and the hydrophobic properties are enhanced compared to PLA. This makes PMALA a potential carrier for anti-tumor drugs, biopharmaceuticals, and tissue regeneration, thereby enhancing the applicability and value of the product. Currently, approximately 30% of polylactic acid (PLA) products are derived from petrochemical processes. Disposing of these products through incineration or landfill is a waste of petrochemical resources. Considering the finite nature of these resources, it is imperative to recycle the raw materials. This study presents a potential solution to the plastic waste problem by using the enzyme Proteinase K to hydrolyze PLA and recover lactic acid (LA), achieving an LA recovery efficiency of 60-80% compared to the alkaline hydrolysis method used in this research. Discarded PLA was utilized as the LA source and converted into the medically valuable PMALA gel copolymer under atmospheric pressure and at 80°C. Unlike traditional copolymer production, which requires polymerization under vacuum or reduced pressure at temperatures above 110°C, this research demonstrates that PMALA can be polymerized at 80°C. This suggests the potential for synthesis using geothermal systems, enabling energy savings by operating at lower temperatures while adding value to waste PLA. This approach aligns with the 12th Sustainable Development Goal (SDG): Responsible Consumption and Production.
Achmad, F., Yamane, K., Quan, S., & Kokugan, T. (2009). Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chemical Engineering Journal, 151 (1), 342–350.
Afrin, R., Chen, C., Sarpa, D., Sithamparam, M., Yi, R., Giri, C., Mamajanov, I., Cleaves II, H. J., Chandru, K., & Jia, T. Z. (2022). The effects of dehydration temperature and monomer chirality on primitive polyester synthesis and microdroplet assembly. Macromolecular Chemistry and Physics, 223 (23), 2200235.
Ahmad, A., Banat, F., & Taher, H. (2020). A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environmental Technology & Innovation, 20, 101138.
Alves de Oliveira, R., Komesu, A., Vaz Rossell, C. E., & Maciel Filho, R. (2018). Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochemical Engineering Journal, 133, 219–239.
Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 107, 333–366.
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8 (9), 3494–3511.
Chhetri, G., Kalita, P., & Tripathi, T. (2015). An efficient protocol to enhance recombinant protein expression using ethanol in Escherichia coli. MethodsX, 2, 385–391.
Chen, C., Yi, R., Igisu, M., Sakaguchi, C., Afrin, R., Potiszil, C., Kunihiro, T., Kobayashi, K., Nakamura, E., Ueno, Y., Antunes, A., Wang, A., Chandru, K., Hao, J., & Jia, T. Z. (2023). Spectroscopic and biophysical methods to determine differential salt-uptake by primitive membraneless polyester microdroplets. Small Methods, 7 (12), 2300119.
Chi, Z., Wang, Z. P., Wang, G. Y., Khan, I., & Chi, Z. M. (2016). Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol, 36 (1), 99–107.
Datta, R., & Henry, M. (2006). Lactic acid: Recent advances in products, processes and technologies — a review. Journal of Chemical Technology & Biotechnology, 81 (7), 1119–1129.
de França, J. O. C., da Silva Valadares, D., Paiva, M. F., Dias, S. C. L., & Dias, J. A. (2022). Polymers Based on PLA from Synthesis Using D,L-lactic acid (or racemic lactide) and some biomedical applications: A short review. Polymers (Basel), 14 (12).
Dechy-Cabaret, O., Martin-Vaca, B., & Bourissou, D. (2004). Controlled ring-opening polymerization of lactide and glycolide. Chemical Reviews, 104 (12), 6147–6176.
Dopico-García, S., Ares-Pernas, A., Otero-Canabal, J., Castro-López, M., López-Vilariño, J. M., González-Rodríguez, V., & Abad-López, M. J. (2013). Insight into industrial PLA aging process by complementary use of rheology, HPLC, and MALDI. Polymers for Advanced Technologies, 24 (8), 723–731.
Dorgan, J., Lehermeier, H., & Mang, M. (2000). Thermal and rheological properties of commercial-grade poly (lactic acid)s. Journal of Polymers and the Environment, 8, 1–9.
Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D., & Lang, H. (1974). Proteinase K from Tritirachium album Limber. European Journal of Biochemistry, 47 (1), 91–97.
Forsythe, J. G., Yu, S.-S., Mamajanov, I., Grover, M. A., Krishnamurthy, R., Fernández, F. M., & Hud, N. V. (2015). Ester-mediated amide bond formation driven by wet–dry cycles: A possible path to polypeptides on the prebiotic earth. Angewandte Chemie International Edition, 54 (34), 9871–9875.
Ginjupalli, K., Shavi, G. V., Averineni, R. K., Bhat, M., Udupa, N., & Nagaraja Upadhya, P. (2017). Poly (α-hydroxy acid) based polymers: A review on material and degradation aspects. Polymer Degradation and Stability, 144, 520–535.
Harris, J., & Marles-Wright, J. (2017). Macromolecular Protein Complexes: Structure and Function (Vol. 83).
Huang, X., Xu, L., Qian, H., Wang, X., & Tao, Z. (2022). Polymalic acid for translational nanomedicine. J Nanobiotechnology, 20 (1), 295.
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9 (5), 552–571.
Jia, T. Z., Bapat, N. V., Verma, A., Mamajanov, I., Cleaves, H. J., II, & Chandru, K. (2021). Incorporation of basic α-Hydroxy acid residues into primitive polyester microdroplets for RNA segregation. Biomacromolecules, 22 (4), 1484–1493.
Jia, T. Z., Chandru, K., Hongo, Y., Afrin, R., Usui, T., Myojo, K., & Cleaves, H. J. (2019). Membraneless polyester microdroplets as primordial compartments at the origins of life. Proceedings of the National Academy of Sciences, 116 (32), 15830–15835.
Jitrapakdee, S., St Maurice, M., Rayment, I., Cleland, W. W., Wallace, J. C., & Attwood, P. V. (2008). Structure, mechanism and regulation of pyruvate carboxylase. Biochem J, 413 (3), 369–387.
Kajiyama, T., Kobayashi, H., Taguchi, T., Kataoka, K., & Tanaka, J. (2004). Improved synthesis with high yield and increased molecular weight of poly (α,β-malic acid) by direct polycondensation. Biomacromolecules, 5 (1), 169–174.
Kane, D. A. (2014). Lactate oxidation at the mitochondria: A lactate-malate-aspartate shuttle at work [Perspective]. Frontiers in Neuroscience, 8.
Kawai, F., Nakadai, K., Nishioka, E., Nakajima, H., Ohara, H., Masaki, K., & Iefuji, H. (2011). Different enantioselectivity of two types of poly (lactic acid) depolymerases toward poly (l-lactic acid) and poly (d-lactic acid). Polymer Degradation and Stability, 96 (7), 1342–1348.
Lee, B.-S., Fujita, M., Khazenzon, N. M., Wawrowsky, K. A., Wachsmann-Hogiu, S., Farkas, D. L., Black, K. L., Ljubimova, J. Y., & Holler, E. (2006). Polycefin, a new prototype of a multifunctional nanoconjugate based on poly (β-l-malic acid) for drug delivery. Bioconjugate Chemistry, 17 (2), 317–326.
Liu, J., Li, J., Shin, H. D., Du, G., Chen, J., & Liu, L. (2017). Biological production of L-malate: Recent advances and future prospects. World J Microbiol Biotechnol, 34 (1), 6.
Ljubimova, J. Y., Fujita, M., Ljubimov, A. V., Torchilin, V. P., Black, K. L., & Holler, E. (2008). Poly (malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine (Lond), 3 (2), 247–265.
Loyer, P., & Cammas-Marion, S. (2014). Natural and synthetic poly (malic acid)-based derivates: A family of versatile biopolymers for the design of drug nanocarriers. J Drug Target, 22 (7), 556–575.
Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59 (1), 145–152.
Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101 (22), 8493–8501.
Mehmood, A., Raina, N., Phakeenuya, V., Wonganu, B., & Cheenkachorn, K. (2023). The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Materials Today: Proceedings, 72, 3049–3055.
Minárik, P., Tomaskova, N., Kollarova, M., & Antalik, M. (2002). Malate dehydrogenases-structure and function. General physiology and biophysics, 21 (3), 257–266.
Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46.
Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M., & Ezawa, T. (2004). Quantification of polyphosphate: Different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Anal Biochem, 328 (2), 139–146.
Oyama, H. T., Tanishima, D., & Maekawa, S. (2016). Poly (malic acid-co-L-lactide) as a superb degradation accelerator for Poly (l-lactic acid) at physiological conditions. Polymer Degradation and Stability, 134, 265–271.
Ramírez-Herrera, C., Flores-Vela, A., Torres-Huerta, A., Domínguez-Crespo, M. A., & Palma Ramírez, D. (2018). PLA degradation pathway obtained from direct polycondensation of 2-hydroxypropanoic acid using different chain extenders. Journal of Materials Science, 53.
Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R. E., Foroughi, F., Wu, M., Das, O., & Ramakrishna, S. (2021). The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers, 13 (11).
Rossi, V., Cleeve-Edwards, N., Lundquist, L., Schenker, U., Dubois, C., Humbert, S., & Jolliet, O. (2015). Life cycle assessment of end-of-life options for two biodegradable packaging materials: Sound application of the European waste hierarchy. Journal of Cleaner Production, 86, 132–145.
Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26 (3), 246–265.
Suo, A., Qian, J., Yao, Y., & Zhang, W. (2010). Galactosylated poly (ethylene glycol)-b-poly (l-lactide-co-β-malic acid) block copolymer micelles for targeted drug delivery: preparation and in vitro characterization. International Journal of Nanomedicine, 5, 1029–1038.
Sweeney, P. J., & Walker, J. M. (1993). Proteinase K (EC 3.4.21.14). In M. M. Burrell (Ed.), Enzymes of Molecular Biology (p. 305–311). Humana Press.
Tarbuk, a., Čorak, i., Đorđević, d., Draczyński, z. (2022). Accelerated hydrolysis of PLA fibers at low temperature. 21st world textile conference autex 2022.
Teixeira, S., Eblagon, K. M., Miranda, F., R. Pereira, M. F., & Figueiredo, J. L. (2021). Towards controlled degradation of poly (lactic) acid in technical applications.
Vaidya, A. N., Pandey, R. A., Mudliar, S., Kumar, M. S., Chakrabarti, T., & Devotta, S. (2005). Production and recovery of lactic acid for polylactide—An overview. Critical Reviews in Environmental Science and Technology, 35 (5), 429–467.
Wadsö, L., & Karlsson, O. J. (2013). Alkaline hydrolysis of polymers with ester groups studied by isothermal calorimetry. Polymer Degradation and Stability, 98 (1), 73–78.
Wang, J., Ni, C., Zhang, Y., Zhang, M., Li, W., Yao, B., & Zhang, L. (2014). Preparation and pH controlled release of polyelectrolyte complex of poly (l-malic acid-co-d,l-lactic acid) and chitosan. Colloids and Surfaces B: Biointerfaces, 115, 275–279.
Wang, L., Neoh, K.-G., Kang, E.-T., Shuter, B., & Wang, S.-C. (2010). Biodegradable magnetic-fluorescent magnetite/poly (dl-lactic acid-co-α,β-malic acid) composite nanoparticles for stem cell labeling. Biomaterials, 31 (13), 3502–3511.
Wang, P.-H., Fujishima, K., Berhanu, S., Kuruma, Y., Jia, T. Z., Khusnutdinova, A. N., Yakunin, A. F., & McGlynn, S. E. (2020). A bifunctional polyphosphate kinase driving the regeneration of nucleoside triphosphate and reconstituted cell-free protein synthesis. ACS Synthetic Biology, 9 (1), 36–42.
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry [Review]. Frontiers in Bioengineering and Biotechnology, 9.
Ward, D. E., van Der Weijden, C. C., van Der Merwe, M. J., Westerhoff, H. V., Claiborne, A., & Snoep, J. L. (2000). Branched-chain alpha-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: A new, secreted metabolite serving as a temporary redox sink. J Bacteriol, 182 (11), 3239–3246.
Xu, X.-J., Sy, J. C., & Prasad Shastri, V. (2006). Towards developing surface eroding poly (α-hydroxy acids). Biomaterials, 27 (15), 3021–3030.
Yin, Q., Yin, L., Wang, H., & Cheng, J. (2015). Synthesis and biomedical applications of functional poly (α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides. Accounts of Chemical Research, 48 (7), 1777–1787.
Yu, N. Y. C., Schindeler, A., Little, D. G., & Ruys, A. J. (2010). Biodegradable poly (α-hydroxy acid) polymer scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93B (1), 285–295.
Zaaba, N. F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 60 (9), 2061–2075.
Zhang, Y., Ni, C., Shi, G., Wang, J., Zhang, M., & Li, W. (2015). The polyion complex nano-prodrug of doxorubicin (DOX) with poly (lactic acid-co-malic acid)-block-polyethylene glycol: Preparation and drug controlled release. Medicinal Chemistry Research, 24 (3), 1189–1195.