跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅文廷
Wen-ting Luo
論文名稱: 多使用者多輸入多輸出正交分頻多工系統使用最小均方誤差預編碼
Resource Allocation in Multiuser MIMO-OFDM Systems with MMSE Precoding
指導教授: 陳永芳
Yung-fang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: 多輸入多輸出正交分頻多工資源配置最小均方誤差預編碼
外文關鍵詞: Multiple input multiple output (MIMO), resource allocation, orthogonal frequency division multiplexing (OFDM, minimum mean square error (MMSE) precoding
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出使用者選擇與功率配置演算法,目標為考慮使用者吞吐量總和最大化與公平性之間的補償,應用在多輸入多輸出正交分頻多工下鏈系統,並且使用最小均方誤差預編碼。因為找尋最佳使用者之集合計算複雜度過於龐大,所以我們使用一些數學簡化的程序來減少複雜度。然而干擾存在下之功率配置方式不再與傳統注水式功率配置演算法相同。在這個議題下,問題將不再是凸函數之問題,而是轉變成非線性非凸函數最佳化問題。我們根據二分逼近法提出功率配置演算法處理干擾存在下功率配置的問題只能找到局部最佳解。因此,我們使用全域最佳化方法計算帶有限制之下非線性非凸函數之最佳化問題。其方法將非線性非凸函數取代為兩種不同的凸函數,並計算全域最佳解。由複雜度與電腦模擬分析,我們可以知道提出次佳演算法逼近最佳解,並且有更少的複雜度,同時使用者吞吐量與公平性之間的補償也被考慮在其中。


    In this thesis, the user selection and power allocation algorithm is proposed for downlink MIMO-OFDM system using MMSE precoding, where the objective considers balancing between the maximization of the sum of users’ throughput and their fairness. Since finding the optimal user subset has very high computational burden, we use some mathematical simplification processes to reduce the scheduling complexity. However, the power allocation is not in interference-free environment as in the conventional water filling method but in the presence of crosstalk. In this scenario, the problem under consideration is not a convex problem but a nonlinear non-convex optimization problem, which is difficult to solve. We propose a power allocation method based on the bisection strategy to overcome this problem with interference-aware capability of finding local optimal solutions. In addition, we use global optimization techniques to compute global optima of the constrained non-convex nonlinear optimization problems. Its objective function is replaced by a difference of two convex functions. The computer simulation results show that the proposed sub-optimal scheme is close to that of the optimal solution with a less complexity and the tradeoff between system throughput and fairness among users is considered.

    論文摘要................................................i Abstract...............................................ii 致謝..................................................iii List of Contents......................................iii List of Figures........................................vi List of Tables........................................vii Chapter1 Introduction...................................1 1.1 A history of Wireless Communication.................1 1.2 Wireless Communication Channel......................2 1.3 Multicarrier Modulation (OFDM)......................4 1.4 Multiple Access Schemes.............................7 1.5 Introduction to Resource Allocation.................8 1.5.1. Two Classes of Resource Allocation Schemes.......8 1.5.2. Water Filling Power Allocation..................10 1.5.3. Farirness Issue.................................12 1.6 Multiple Input Multiple Output (MIMO)..............13 1.6.1. Introduction to MIMO............................13 1.6.2. MIMO Channel....................................15 1.6.3. Singular Value Decomposition (SVD) Process......17 1.6.4. Review of the Literature........................18 1.7 Organization.......................................20 1.8 Notation...........................................20 1.9 Abbreviations......................................21 Chapter2 System Model and Problem Formulation..........22 2.1 MIMO OFDM System Model.............................22 2.2 Problem Formulation................................26 Chapter3Proposed User Selection and Power Allocation Scheme…...............................................29 3.1 Proposed Scheme....................................29 3.1.1. User Selection..................................31 3.1.3. Power Allocation................................35 3.2 Algorithm Illustration for [30-31].................40 3.2.1 Greedy User Selection [30].......................40 3.2.2 Low Complexity of User Selection [31]............43 3.3 The Performance Analysis...........................45 3.4 The Complexity Analysis and Comparison.............49 Chapter4 Simulation results............................52 Chapter5 Conclusion....................................58 BIBLIOGRAPHY...........................................59 Appendix I.............................................66 Appendix II............................................69

    [1]Z. Shen, “Multiuser resource allocation in multichannel wireless communication systems,” Ph.D. dissertation, Texas Univ., 2006.
    [2]I. Wong, B. Evans, Resource allocation in multiuser multicarrier wireless systems, Springer, 2008.
    [3]H. G. Myung, “Single carrier orthogonal multiple access technique for broadband wireless communications,” Ph.D. dissertation, Polytechnic Univ., Jan 2007.
    [4]T. S. Rappaport, Wireless communications: principles and practice, New Jersey: Prentice Hall, 1999.
    [5]S. Haykin, Communication systems, New York: John Wiley & Sons, Inc., 4th Edition, 2001.
    [6]S. Sadr, “Suboptimal rate adaptive resource allocation in multiuser OFDM communication systems,” MS Dissertation, Ryerson University, Sept. 2007.
    [7]G. Proakis, M. Salehi, Digital communications, New York: McGraw Hill, 5th Edition, 2008.
    [8]Z. Shen, J. G. Andrews, B. L. Evans, “Optimal power allocation in multiuser OFDM systems,” in Proc. IEEE Global Telecomm. Conf., vol. 1, no. 12, pp. 337-341, Dec. 2003.
    [9]C. Y. Wong, C. Y. Tsui, R. S. Cheng and K. B. Letaief, “A real-time subcarrier allocation scheme for multiple access downlink OFDM transmission,” in Proc. IEEE Veh. Tech. Conf., vol. 2, no. 9, pp. 1124-1128, Sept. 1999.
    [10]J. Jang, K. B. Lee, “Transmit power adaption for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
    [11]D. Tse, P. Viswanath, Fundamentals of wireless communication, Cambridge University Press, 2005.
    [12]Z. Shen, J. G. Andrews, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2726-2737, Apr. 2005.
    [13]H. Kim and Y. Han, “A proportional fair scheduling for multicarrier transmission systems,” IEEE Commun. Lett., vol. 9, no. 3, pp. 210-212, Mar. 2005.
    [14]K. Sheikh, D. Gesbert, D. Gore, and A. Paulraj, “Smart antennas for broad-band wireless access networks,” IEEE Commun. Mag., vol. 37, no. 11, pp. 100-105, Nov. 1999.
    [15]A. J. Paulraj, R. Nabar and D. Gore, Introduction to space-time wireless communications, Cambridge University Press, 2003.
    [16]M. Ergen, Mobile broadband including WiMAX and LTE, Springer, 2009.
    [17]I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ. Trans. Telecommun., vol. 10, no. 11, pp. 585-595, Nov. 1999.
    [18]F. Sun, M. You, J. Liu, P. Wen, and S. Wu, “Joint frequency-spatial resource allocation with bipartite matching in OFDM-MIMO systems,” in Proc. IEEE Veh. Tech. Conf., no. 12, pp. 1-5, Dec. 2009.
    [19]S. K. Burra, R. P. R. Yendrapalli, “User scheduling algorithm for MU-MIMO system with limited feedback,” MS Thesis, Blekinge Institute of Technology , Sept. 2010.
    [20]P. H. Lin, S. H. Tsai and C. H. Chuang, “Transmit antenna selection with linear precoding in MIMO multiuser systems,” in Proc. IEEE Global Telecomm. Conf., no. 12, pp. 1-5, Dec. 2010.
    [21]F. Shu, G. Wu and S. q. Li, “Dual codebook based multi-user MIMO precoding and scheduling with limited feedback,” IEEE International Conf. on Commun. Circuits and Systems, no. 7, pp. 19-23, July. 2009.
    [22]M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no. 5, pp. 439-441, May. 1983.
    [23]T. Yoo, A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528-541, Mar. 2006.
    [24]C. Wei, L. Qiu and J. Zhu, “User selection and resource allocation for multi-user MIMO-OFDM systems with downlink beamforming,” IEEE International Conf. on Commun. and Networking, no. 10, pp. 1-5, Oct. 2006.
    [25]X. Li, H. Tian, Q. Sun and L. Li, “Utility based scheduling for downlink OFDMA/SDMA systems with multimedia traffic,” in Proc. IEEE Wireless Commun. and Networking Conf., no. 4. pp. 1-6, Apr. 2010.
    [26]I. Koutsopoulos and L. Tassiulas, “Adaptive resource allocation in SDMA-based wireless broadband networks with OFDM signaling,” in Proc. IEEE International Conf. on Computer Commun., vol. 3, no. 1, pp. 1376-1385, Jan. 2002.
    [27]P. W. C. Chan and R. S. Cheng, “Capacity maximization for zero-forcing MIMO-OFDMA downlink systems with multiuser diversity,” IEEE Trans. Wireless Commun., vol. 6, no.5, pp. 1880-1889, May 2007.
    [28]T. Ji, C. Zhou, S. Zhou and Y. Yao, “Low complex user selection strategies for multi-user MIMO downlink scenario,” in Proc. IEEE Wireless Commun. and Networking Conf., no. 3, pp. 1532-1537, Mar. 2007.
    [29]Y. i. Shin, T. S. Kang and H. M. Kim, “An efficient resource allocation for multiuser MIMO-OFDM systems with zero-forcing beamformer,” IEEE Personal, Indoor and Mobile Radio Commun., no. 9, pp. 1-5, Sept. 2007.
    [30]G. Dimic, N. D. Sidiropoulos, “On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm,” IEEE Trans. Signal processing, vol. 53, no. 10, pp. 3857-3868, Oct. 2005.
    [31]S. Karachontzitis and D. Toumpakaris, “Efficient and low-complexity user selection for the multiuser MISO downlink,” IEEE Personal, Indoor and Mobile Radio Commun., no. 9, pp. 3094-3098, Sept. 2009.
    [32]X. Yang and L. N. Tho, “A capacity-achieving precoding scheme based on channel inversion regularization with optimal power allocation for MIMO broadcast channels,” in Proc. IEEE Global Telecomm. Conf., no. 11, pp. 3190-3194, Nov. 2007.
    [33]V. D. Papoutsis, I. G. Fraimis and S. A. Kotsopoulos, “User selection and resource allocation algorithm with fairness in MISO-OFDMA,” IEEE Commun. Lett., vol. 14, no. 5, May. 2010.
    [34]V. D. Papoutsis and S. A. Kotsopoulos, “Chunk-based resource allocation in distributed MISO-OFDMA systems with fairness guarantee,” IEEE commun. Lett., vol. 15, no. 4, Apr. 2011.
    [35]K. Sun, Y. Wang, x. Chen Zi and P. Zhang, “Fairness based resource allocation for multiuser MISO-OFDMA systems with beamforming,” The J. of China Univ. of Posts and Telecommun., pp. 38-43. Feb. 2009.
    [36]W. Yu, “Multiuser water-filling in the presence of crosstalk,” In Proc. Inf. Theory and Application Workshop, no. 6, pp. 414-420, Jan. 2007.
    [37]Y. Xu, T. Le-Ngoc and S. Panigrahi, “Global concave minimization for optimal spectrum balancing in multi-user DSL networks,” IEEE Trans. Signal Processing, vol. 56, no. 7, pp. 2875-2885, Jul. 2008.
    [38]S. Boyd, L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2003.
    [39]V. K. N. Lau, “Asymptotic analysis of SDMA systems with near-orthogonal user scheduling (NEOUS) under imperfect CSIT,” IEEE Trans. Commun., vol. 57, no. 3, pp. 747–753, March. 2009.
    [40]M. Johan, W. Utschick and J. A. Nossek, “Linear transmit processing in MIMO communication systems,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 2700–2712, Aug. 2005.
    [41]B. Bandemer, M. Haardt and S. Visuri, “Linear MMSE multi-user MIMO downlink precoding for users with multiple antennas,” IEEE Personal, Indoor and Mobile Radio Commun., no. 12, pp. 1-5. Dec. 2006.
    [42]C. B. Peel, B. M. Hochwald and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication - Part I: channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195-202, Jan. 2005.
    [43]M. Lee and S. K. Oh, “A per-user successive MMSE precoding technique in multiuser MIMO systems,” in Proc. IEEE Veh. Tech. Conf., no. 5. pp. 2374-2378, May. 2007.
    [44]V. K. N. Lau, “Optimal downlink space-time scheduling design with convex utility functions – multiple-antenna systems with orthogonal spatial multiplexing,” IEEE Trans. Veh. Tech., vol. 54, no. 4, pp. 1322–1333, July. 2005.
    [45]R. C. Elliott, W. A. Krzymien, “Downlink scheduling via genetic algorithms for multiuser single-carrier and multicarrier MIMO systems with dirty paper coding,” IEEE Trans. Veh. Tech., vol. 58, no. 7, pp. 3247–3262, Sept. 2009.
    [46]Aimin Sang, Xiaodong Wang, Mohammad Madihian and Richard D. Gitlin, “Downlink scheduling schemed in cellular packet data systems of Multiple-Input Multiple-Output antennas,” in Proc. IEEE Global Telecomm. Conf., no. 1, pp. 4021-4027, Jun.2005.
    [47]T. D. Nguyen and Y. Han, “A proportional fairness algorithm with QoS provision in downlink OFDMA systems,” IEEE Commun. Lett. vol. 10, no. 11, pp. 760-762, Nov. 2006.
    [48]S. Yoon, Y. Cho, C.B. Chae and H. Lee, “System level performance of OFDMA forward link with proportional fair scheduling,” IEEE Personal, Indoor and Mobile Radio Commun., vol. 2, pp. 1384-1388, Sept. 2004.
    [49]F. P. Kely, A. K. Maullo, and D. K. H. Tan, “Rate control for communication networks: shadow prices, proportional fairness, and stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237-252, Mar. 1998.
    [50]Y. Xu, T. Le-Ngoc, “Optimal power allocation with channel inversion regularization-based precoding for MIMO broadcast channels,” in Proc. Europ. Signal Processing Conf., no. 12, pp. 1-8, Dec. 2008.
    [51]J. C. Lin, “Least-squares channel estimation for mobile OFDM communication on time-varying frequency-selective fading channels,” IEEE Trans. Veh. Tech., vol. 57, no. 11, pp. 3538–3550, Nov. 2008.
    [52]Y. J. Zhang, K. B. Letaief, “An efficient resource-allocation scheme for spatial multiuser access in MIMO/OFDM systems,” IEEE Trans. Commun., vol. 53., no. 1, pp. 107-116, Jan. 2005

    QR CODE
    :::