| 研究生: |
吳羽庭 Yu-Ting Wu |
|---|---|
| 論文名稱: |
課程樹2.0:課程與學習活動管理系統 - 以國小分數課程為例 Curriculum Tree 2.0 : Curriculum and learning activity management system – Take curriculum of fractions in elementary school for example |
| 指導教授: |
陳德懷
Tak-Wai Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 結構化學習內容 、課程樹 、課程管理 、概念圖 |
| 外文關鍵詞: | concept map, curriculum management, structural content, curriculum tree |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現在的課程中,雖然教材漸漸的簡單化,但是由於教育部九年一貫課程的實施之下,老師的角色開始有些轉變,不僅要管理學校事務,還需要設計課程的教學計畫與教學的教材,這樣無形的加重老師的負擔。對於學生而言,由於傳統教科書的編排的上課方式,讓學生也較沒有辦法了解單元之間前後的關係,也較難以抓住課程單元的架構重點。
本論文利用樹狀結構概念圖的想法,設計了一個課程與活動管理系統叫做 課程樹 2.0,透過樹狀階層的關係,呈現單元概念及活動之間的關係。主要是幫助老師進行管理課程的進度,安排課程的教材及掌控課堂中學生的學習情況。系統不只是提供老師一個課程的管理環境,也提供學生透過了系統的說明,進而了解課程的重點架構,因此在使用系統後,能夠較專注於課程的進行。
在過去有許多人針對於課程管理平台做過研究,但比較少人將課程與系統做緊密的結合,是透過課程與系統的較完整的結合,讓學生能夠了解課程的學習架構與單元目標,也能夠掌握學習情況來提升學生的學習成效。
最後本研究經由系統操作與實驗發現課程樹系統對於老師在學生學習情況的掌握有很大的幫助,對於提升學生學習成效而言也是有正面的影響。
Nowadays, although the curriculum in school become more and more easily, but teacher has much more things need to be prepared then past. Under the Guidelines of the Grade 1-9 Curriculum of the Ministry of Education in Taiwan, teacher needs to design their own curriculum and prepare learning activities before the class begin. It becomes heavy loads for teachers to prepare and arrange the teaching plan and learning contents and students hard to catch the key points of the course.
In the research of the thesis, we design a curriculum and activity management system, called Curriculum Tree 2.0. Use the idea of the concept map to design the system. With the tree structure, we combine the curriculum and platform. It not only supports and helps teachers manage curriculum and activity, but supply students an integrated learning platform to increase students learning performance. Students can more understand the whole curriculum structure through the system.
Finally, via experiment, we found that the system is helpful for teachers to monitor students’ learning conditions and positive for students’ learning.
[1]
Duffy, T. M. & Jonassen, D. H. (1992). Constructivism and the technology of instruction, Hillsdale, NJ: Lawrence Erlbaum.
[2]
Black, J. B. & McClintock, R.O. (1995). An interpretation construction approach to constructivist design, In B. Wilson(Ed), Constructivist learning environments, Englewood Cliffs, NJ: Educational Technology Publications.
[3]
Owston, R. D. (1997). The world wide web: A technology to enhance teaching and learning? Educational Researcher, 26(2), 27-33
[4]
Tsai, C. J., Tseng, S. S., Chen, C. T., Hsu, H. L., & Zheng, J. R. (2001). Design of an object-oriented teaching material authoring system, GCCCE, 1008-1015.
[5]
教育部(1998),國民中小學九年一貫課程綱要總綱
[6]
劉子鍵、莊益瑞、陳德懷、賴慧珉、王瑀、施秀美和蕭錦玲(2001),教師教學計劃知識分享平台之建置與實作,《第五屆全球華人計算機教育應用大會論文集》,684-690
[7]
孫國珊(2002),南投縣國民小學教師資訊素養之研究,國立台中師範學院碩士論文。
[8]
Lin, C. H. & Gayle, D. (1996). Effects of linking structure and cognitive style on students'' performance and attitude in a computer-based hypertext environment. Journal of Educational Computing Research, 15(4), 317-329.
[9]
Jonassen, D. H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45(1), 65-94.
[10]
Novak, J. D. (1981). Applying learning psychology and philosophy of science to biology teaching, The American Biology Teacher, 43, 12-20.
[11]
Oblinger, D. (1992). Teaching and learning with computers, An IAT technical primer, North Carolina University, Chapel Hill, NC: Institute for Academic Technology.
[12]
Ausubel, D. P. (1968). Educational Psychology: A cognitive view. NY: Holt, Rinehart & Winston.
[13]
Novak, J. D., and Gowin, D. B. (1984). Learning how to learning, NY: Cambridge University Press.
[14]
McCagg, E. C. & Dansereau, D. F. (1991). A convergent paradigm for examining knowledge mapping as a learning strategy. Journal of Educational Research, 84(6), 317-324.
[15]
Novak, J. D. (2000). The theory underlying concept maps and to construct them, Website of Institute for Human & Machine Cognition(IHMC), Available: http://cmap.coginst.uwf.edu/info/, Accessed Date:30-05-2005.
[16]
Novak, J.D. (1991). Clarify with concept maps: A tool for students and teachers alike, The Science Teacher, 58(7), 45-49.
[17]
Novak, J. D. (1993). How do we learn our lesson? : Taking students through the process, The Science Teacher, 60(3), 50-55.
[18]
Jonassen, D.H. (2000). Computer as mindtools for schools: Engaging critical thinking (2nd Ed.), Upper Saddle River, NJ: Prentice-Hall, Inc.
[19]
古洋明(2004),以不同遊戲因子促進學習動機之學習環境設計-以結構化內容為例,國立中央大學網路學習科技研究所碩士論文
[20]
Berg-cross, G.. & Price, M.E. (1989). Acquiring and managing knowledge using a conceptual structure approach: Introduction and framework, IEEE Transactions on System, Man, and Cybernetics, 19(3), 513-527.
[21]
Sousa, D. A. (2001). How the brain learns (2nd Ed.), Thousand Oaks, CA: Corwin Press.
[22]
Southwell. B. (1985). The development of rational number concepts in Papua. New Guinea. In Bell, A., Low, B., & Kilpatrick, J. (Eds.), Theory, Research, and practice in mathematical education, Nottingham, England: Shell Centre for Mathematical Education, University of Nottingham.
[23]
Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum.
[24]
Behr, M., Harel, G.., Post, T. & Lesh, R. (1992). Rational number, ratio and proportion. In D. Grouws(Ed.), Handbook of research on mathematics teaching and learning. NY: Macmillan.
[25]
Ina, V.S., Michael, O. M, Eugenio, J. G., & Steven, J. C. (2003). International Mathematics Report, Findings from IEA’s trends in international mathematics and science study at the forth and eighth grades, TIMSS & PIRLS International Study Center Lynch School of Education, Boston College.
[26]
國科會(2004),國科會記者會新聞稿
[27]
Mayer, R. E. (1992). Cognition and instruction: Their historic meeting within educational psychology, Journal of Educational Psychology, 84, 405-412.
[28]
Silver, E. A. (1987). Foundations of cognitive theory and research for mathematics problem-solving instruction, In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education, Hillsdale, NJ: Erlbaum, 33-60.
[29]
Derry, J. S. & Hawkes, L. W. (1993). Local cognitive modeling of problem solving behavior: An application of fuzzy theory. In Lajoie, S. P. & Derry, S.J. (Ed.). Computers as cognitive tools. Hillsdale, NJ: Lawrence Erlbaum.
[30]
Reusser, K. (1996). From cognitive modeling to the Design of pedagogical tools. In Vosnadiou, S., De Corte, E., Glaser, R., and Mandl, H., (Eds.), International Perspectives on the Design of Technology Supported Learning Environments, Hillsdale, NJ : Lawrence Erlbaum, 81-104.
[31]
李進寶(2001),學習技術研討會
[32]
王坤德(2003),數位學習教材機制的設計與管理研究,國立成功大學碩士論文
[33]
Tyler, R. W. (1949). The basic principles of curriculum and instruction, Chicago: The University of Chicago Press.
[34]
黃政傑(民80),課程設計。台北:東華
[35]
Chan T.W. (1989). Learning Companion Systems. Ph.D. thesis, Department of Computer Science. University of Illinois at Urbana-Champain.
[36]
Chan T.W., & Baskin A.B. (1990). Learning Companion Systems, Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence and Education, Frasson, C. & Gauthier, G. (Eds), 6-33.
[37]
Chan, T. W. (1992). Curriculum Tree: A knowledge-based architecture for intelligent tutoring systems, Intelligent Tutoring System: Lecture Notes in Computer Science, 140-147