跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳柏融
Bo-Rong Wu
論文名稱: 離軸全像光學儲存之誤碼率的模擬與研究
The study and simulation of the bit error rate of off-axis volume holographic data storage system
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 113
中文關鍵詞: 位元誤碼率光學儲存全像
外文關鍵詞: bit error rate, optical storage, holograpgy
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們針對離軸式體積全像儲存系統架構推導其數學模型,並利用此數學模型計算系統在多工儲存多頁間的串音影響及位元誤碼率,並分析系統之容忍度。我們也提出「定點讀取系統」、「持續轉動讀取系統」兩套系統間的比較。最後我們進行實驗,並驗證位移補償系統與布拉格選擇性之正確性。


    In the thesis, we study the off-axis volume holographic data storage system, and we simulate the bit error rate , multi-page intercross-talk effect and analyze the system tolerance. We propose to calculate the bit error rate with single-point readout algorithm and multiple-point readout
    algorithm. Finally, we build up the experiment system to verify the displacement compensation and Bragg selectivity by the theoretical calculation.

    摘要 ........................................................................................................................... I Abstract ..................................................................................................................... II 誌謝 ........................................................................................................................ III 圖索引 .................................................................................................................... VI 表索引 .................................................................................................................. VIII 第一章 緒論 ........................................................................................................... 1 1.1 全像之發展與儲存系統簡介 ..................................................................... 3 1.2 論文大綱與安排 ........................................................................................ 5 第二章 原理介紹 ................................................................................................... 7 2.1 布拉格條件 ................................................................................................ 7 2.2 理論分析 .................................................................................................. 10 2.2.1 耦合波理論 .................................................................................... 11 2.2.1-1 布拉格匹配......................................................................... 14 2.2.1-2 布拉格不匹配 ..................................................................... 16 2.3 相位疊加法 .............................................................................................. 19 2.4 位元誤碼率 .............................................................................................. 23 第三章 離軸式全像儲存系統架構 ...................................................................... 27 3.1 系統架構 ...................................................................................................27 3.2 繞射光場之近似解析解 ........................................................................... 30 3.2.1 空間調製器之近似模型 ................................................................ 30 3.2.2 繞射讀取光之近似解析解 ............................................................ 31 3.3 位移補償系統 .......................................................................................... 34 第四章 碟片記錄之行為 ..................................................................................... 35 4.1 布拉格選擇性 .......................................................................................... 36 4.2 位移多工之多頁串音 ............................................................................. 39 第五章 系統容忍度分析 ..................................................................................... 47 5.1 讀取時碟片縱向位移之響應 ................................................................... 48 5.2 偵測器擺放位置之容忍度 ....................................................................... 51 5.3 參考光之傾斜角度容忍度 ....................................................................... 54 第六章 定點讀取系統與持續轉動讀取系統 ....................................................... 57 6.1 持續轉動讀取系統................................................................................... 58 6.2 定點讀取系統 .......................................................................................... 68 6.3 兩套系統之比較 ...................................................................................... 69 6.4 系統閥值的選擇 ...................................................................................... 71 第七章 實驗與驗證 ............................................................................................. 74 7.1 參考共軛光之收斂球面波 ....................................................................... 75 7.2 共軛影像之BER 分析 ............................................................................. 82 7.3 位移補償系統之架設與驗證 ................................................................... 87 第八章 結論 ......................................................................................................... 95 參考文獻 ................................................................................................................ 96 中英文名詞對照表 ................................................................................................. 98

    [1] H. Coufal, and G. W. Burr, "Optical data storage,'' Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE (2002).
    [2] J. W. Goodman, Introduction to Fourier Optics, 3nd edi. (McGraw-Hill, 2002).
    [3] D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
    [4] P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393 (1963).
    [5] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic data storage in three-dimensional media,” Appl. Opt., 5, 1303 (1966).
    [6] C. C. Sun, and W. C. Su, "Three-Dimensional Shifting Selectivity of Random Phase Encoding in Volume Holograms," Appl. Opt. 40, 1253 (2001).
    [7] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage (Springer, 2000).
    [8] J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C.M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development 44, 341 (2000).
    [9] D. Psaltis and F. Mok, “Holographic memories,” Scientic American, 70 (1995).
    [10] Far H. Mok, Geoffrey W. Burr and Demetri Psaltis, “System metric for holography memory systems,” Opt. Lett. 21, 896 (1996).
    [11] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 13, 993 (1994).
    [12] K. Anderson, and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 12, 1402 (2004).
    [13] H. Horimai, X. Tan, and J. Li, “Collinear Holography,” Appl. Opt. 13, 2575 (2005).
    [14] H. Horimai, and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910 (2006).
    [15] B. Fischer, M. C. Golomb, J. O. White, and A. Yariv, "Amplified reflection, transmission, and self-oscillation in real-time holography," Opt. Lett. 6, 519 (1981).
    [16] J. J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, "Compact, integrated dynamic holographic memory with refreshed holograms," Opt. Lett. 22, 552 (1997).
    [17] F. Dubois, F. D. Schryver, and B. Biran, "Theoretical study of size effects in volume holograms," J. Opt. Soc. Am. A 8, 270 (1991).
    [18] F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 High-resolution holograms in LiNbO3 crystal,” Opt. Lett. 16, 605 (1991).
    [19] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471 (1992).
    [20] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 7, 782 (1995).
    [21] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67 (2000).
    [22] J. T. LaMacchia and D. L. White, " Coded multiple exposure holograms," Appl. Opt. 7, 91 (1968).
    [23] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “ Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012 (1995).
    [24] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang and M. W. Chang, “ Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass," Opt. Quantum Electron. 28, 1509 (1996).
    [25] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528 (2003).
    [26] G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-multiplexed holographic memory,” Appl. Opt. 40, 3387 (2001).
    [27] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184 (2003).
    [28] 陳政憲, 無畫素串因之體積全像光儲存碟片之研究, 國立中央大學光電所碩士論文, 中華民國九十四年。
    [29] C. Gu, G. Sornat, and J. Honh, “Bit-error rate and statistics of complex amplitude noise in holographic data storage,” Opt. Lett. 14, 1070 (1996).
    [30] G. P. Nordin, P. Asthana, “Effects of cross talk on fidelity in page-oriented volume holographic optical data storge,” Opt. Lett. 18, 1553 (1993).
    [31] 許哲誌, 離軸式體積全像儲存系統架構之研究, 國立中央大學光電所碩士論文, 中華民國九十六年。

    QR CODE
    :::