| 研究生: |
邱詠惠 Yung-Huei Chiou |
|---|---|
| 論文名稱: |
空間混淆迴歸模型之固定效應頻率估計法 A Frequentist Approach on Fixed Effects Estimation for Spatially Confounded Regression Models |
| 指導教授: |
陳春樹
Chun-Shu Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 基底函數 、偏誤修正 、固定秩克里金法 、均方誤差 、限制性空間迴歸 |
| 外文關鍵詞: | Basis function, Bias reduction, Fixed rank kriging, Mean squared error, Restricted spatial regression |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在空間迴歸分析中,固定效應與隨機效應的混淆(相關) 會導致迴歸係數估計的偏差。本文提出一種新方法,利用固定秩克里金法(Fixed rank kriging) 來減少迴歸係數估計的偏差。此方法的一大優勢在於不需對反應變量的共變異數結構進行參數化假設,從而提高其實用性。在估計過程中,藉由選擇基底函數的數量來權衡估計量的偏差與變異。因此,為了進一步降低迴歸係數估計量的均方誤差,我們提出了Bagging 估計法和γ-估計法兩種策略。本文透過理論的探討驗證所提出估計量的特性。在模擬實驗的
部分,我們設計不同程度的空間混淆效應和各式的空間相關結構(如平穩、非平穩、等向和異向)進行測試,驗證所提方法的穩健性。最後,我們將此估計法應用於科羅拉多州降雨數據的案例用以呈現所提方法的實用性。
In spatial regression analysis, the confounding between fixed and random effects can lead to biased estimation of regression coefficients. This thesis proposes a novel estimation methodology that leverages the fixed rank kriging approach to mitigate these biases. A key advantage of the proposed method is that it circumvents the need for parametric assumptions about the covariance structure of the response variable, enhancing its practical applicability. The estimation process involves selecting an appropriate number of basis functions, which balances bias and variance in the estimators. To minimize the mean squared error of the estimators, we introduce two approaches: a bootstrap aggregation estimator and a γ-estimator. Theoretical properties of the proposed methodology are explored and justified. Extensive simulation studies under various spatial regression settings, including cases of spatial confounding and different correlation structures such as stationary, nonstationary, isotropic, and anisotropic, demonstrate the robustness of the proposed methods. Finally, the methodology is applied to a case study on precipitation data from Colorado, which highlights its practical effectiveness.
1. Akaike, H. (1973). Information theory and the maximum likelihood principle. In International Symposium on Information Theory (V. Petrov and F. Csáki eds.). Akademiai Kiádo, Budapest, 267-281.
2. Allard, D., Senoussi, R., and Porcu, E. (2016). Anisotropy models for spatial data. Mathematical Geosciences, 13, 305-328.
3. Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014). Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall, Boca Raton.
4. Bradley, J. R., Wikle, C. K., and Holan, S. H. (2016). Bayesian spatial change of support for count-valued survey data with application to the American Community Survey.
Journal of the American Statistical Association, 111, 472-487.
5. Chiou, Y. H. and Chen C. S. (2025). A frequentist approach on fixed effects estimation for spatially confounded regression models. Environmental and Ecological Statistics, 32, 523-555.
6. Chiou, Y. H., Yang, H. D., and Chen, C. S. (2019). An adjusted parameter estimation for spatial regression with spatial confounding. Stochastic Environmental Research
and Risk Assessment, 33, 1535-1551.
7. Clayton, D. G., Bernardinelli, L., and Montomoli, C. (1993). Spatial correlation in ecological analysis. International Journal of Epidemiology, 22, 1193-1202.
8. Cressie, N. (1993). Statistics for Spatial Data (revised edition). Wiley, New York.
9. Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B, 70, 209-226.
10. Dupont, E., Wood, S. N., and Augustin, N. H. (2022). Spatial+: a novel approach to spatial confounding. Biometrics, 78, 1279-1290.
11. Efron, B. (1979). Bootstrap methods: Another look at jackknife. Annals of Statistics, 7, 1-26.
12. Eriksson, M. and Siska, P. P. (2000). Understanding anisotropy computations. Mathematical Geology, 32, 683-700.
13. Gelfand, A. E., Kim, H. J., Sirmans, C. F., and Banerjee, S. (2003). Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical
Association, 98, 387-396.
14. Hanks, E. M., Schliep, E. M., Hooten, M. B., and Hoeting, J. A. (2015). Restricted spatial regression in practice: geostatistical models, confounding, and robustness
under model misspecification. Environmetrics, 26, 243-254.
15. Harville, D. A. (1997). Matrix Algebra From a Statistician’s Perspective. Springer, New York.
16. Hodges, J. S. and Reich, B. J. (2010). Adding spatially-correlated errors can mess up the fixed effect you love. The American Statistician, 64, 325-334.
17. Hughes, J. and Haran, M. (2013). Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. Journal of the Royal Statistical Society:
Series B, 75, 139-159.
18. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society: Series C, 52, 1-18.
19. Keller, J. P. and Szpiro, A. A. (2020). Selecting a scale for spatial confounding adjustment. Journal of the Royal Statistical Society: Series A, 183, 1121-1143.
20. Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. Annals of Statistics, 27, 386-404.
21. Ludwig, G., Zhu, J., Reyes, P., Chen, C.S., and Conley, S. P. (2020). On spline-based approaches to spatial linear regression for geostatistical data. Environmental and
Ecological Statistics, 27, 175-202.
22. Matérn, B. (2013). Spatial Variation. Springer Science & Business Media.
23. Paciorek, C. J. (2010). The importance of scale for spatial-confounding bias and precision of spatial regression estimators. Statistical Science, 25, 107-125.
24. Paciorek, C. J. and Schervish, M. J. (2006). Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 17, 483-506.
25. Page, G. L., Liu, Y., He, Y., and Sun, D. (2017). Estimation and prediction in the presence of spatial confounding for spatial linear models. Scandinavian Journal of Statistics, 44, 780-797.
26. Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545-554.
27. Petrakis, M. P. and Hristopulos, D. T. (2017). Non-parametric approximations for anisotropy estimation in two-dimensional differentiable Gaussian random fields. Stochastic Environmental Research and Risk Assessment, 31, 1853-1870.
28. Prates, M. O., Assuncão, R. M., and Rodrigues, E. C. (2019). Alleviating spatial confounding for areal data problems by displacing the geographical centroids. Bayesian
Analysis, 14, 623-647.
29. Qadir, G. A., Sun, Y., and Kurtek, S. (2021). Estimation of spatial deformation for nonstationary processes via variogram alignment. Technometrics, 63, 548-561.
30. Reich, B.J., Hodges, J.S., and Zadnik, V. (2006). Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models. Biometrics, 62, 1197-1206.
31. Ruppert, D., Wand, M. P., and Carroll, R. J. (2009). Semiparametric regression during 2003-2007. Electronic Journal of Statistics, 3, 1193-1256.
32. Schabenberger, O. and Gotway, C. A. (2005). Statistical Methods for Spatial Data Analysis. Chapman Hall/CRC, Boca Raton.
33. Tzeng, S. and Huang, H. C. (2018). Resolution adaptive fixed rank kriging. Technometrics, 60, 198-208.
34. Urdangarin, A., Goicoa, T., Kneib, T., and Ugarte, M. D. (2024). A simplified spatial+ approach to mitigate spatial confounding in multivariate spatial areal models.
Spatial Statistics, 59, 100804.
35. Vecchia, A. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society, Series B, 50, 297-312.
36. Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia.
37. Wikle, C. K. (2010). Low-Rank Representations for Spatial Processes. In Handbook of Spatial Statistics, eds. A. E. Gelfand, P. J. Diggle, M. Fuentes, and P. Guttorp,
Boca Raton, FL: CRC Press, 107-118.
38. Wood, S. N. (2017). Generalized Additive Models: An Introduction with R. 2nd ed.. Chapman and Hall/CRC, New York.
39. Zimmerman, D. L. and Ver Hoef, J. M. (2022). On deconfounding spatial confounding in linear models. The American Statistician, 76, 159-167.