| 研究生: |
顏正和 Cheng-Ho Yen |
|---|---|
| 論文名稱: |
平板式固態氧化物燃料電池雙極板之流道設計與流場觀測 Flow Visualization and Channel Design of Bipolar Plates for a Planar Solid Oxide Fuel Cell |
| 指導教授: |
施聖洋
Shenqyang (Steven) Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 流道設計 、平板式 、雙極板 、固態氧化物燃料電池 、燃料電池 、流場觀測 |
| 外文關鍵詞: | planar, bipolar plate, SOFC, flow visualization, channel design, solid oxide fuel cell, fuel cell |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固態氧化物燃料電池是一個乾淨的能源轉換裝置,其不需經由燃燒過程,便可將燃料的化學能直接轉換成電能。雙極板是固態氧化燃料物電池的重要元件之一,其主要功能是使燃料氣體與空氣能均勻分佈進入活動反應區,來增加燃料的利用率。本研究使用染劑來針對一平板式SOFC雙極版之流道,以導流板設計佐以流場觀測,實驗量測分析雙極板流道流場之均勻度和速度分佈,並探討不同雙極板之流道流場分佈情形,以及雙極板在加入導流板後,導流板對於流道流場分佈有何影響。實驗結果顯示,雙極板兩進氣口中間凸出的部分距流道入口的長度,對於流體在雙極板流道內的分佈影響不大。反觀,實際影響流體在雙極板流道內的分佈,主要是受進氣口扇形區域的幅度大小與流道出口處距離排氣口的距離等影響。而藉由使用導流板,可使流道流場能均勻滲透通過電極,以增加電池的整體效能。
Solid oxide fuel cell (SOFC) is a clean energy conversion device. It converts the chemical energy of a fuel directly into the electric energy without combustion. The bipolar plate is a key component of SOFCs. The major function of the bipolar plate is to distribute uniformly the gaseous fuel and air over the active areas and thus increases the efficiency of fuel usage. This thesis simulates experimentally the flow behaviors in the channels of the bipolar plate of a planar SOFC using flow dye visualization. Focuses are on the uniformity of the flow in the channels, measurements of the mean velocity distributions, and effects of flow Reynolds number. The results show that the influence of the distance from the inlet of channels to the middle prominent part between the two inlets of the bipolar plate is insignificant for the flow uniformity in the channels. Two important factors that influence the flow distribution of the channels in the bipolar plate are formed to be the range of fan-shaped area near the inlet and the distance from the outlet of the channels to the final outlet. Moreover, using the guide vanes in the bipolar plate can make the flow distribution of the channels much more uniformly over the electrodes and thus could increase the whole efficiency of fuel cells.
Ackmann, T., Haart, L. G. J. de, Lehnert, W., and Stolten, D., “Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs”, Journal of the Electrochemical Society, Vol. 150, A783-A789 (2003).
Carrette, L., Friedrich, K. A., and Stimming, U., “Fuel Cells – Fundamentals and Applications”, Fuel Cells, Vol. 1, pp. 5-39 (2001).
Cooper, J. S., “Design Analysis of PEMFC Bipolar Plates Considering Stack Manufacturing and Environment Impact”, Journal of Power Sources, Vol. 129, pp. 152-169 (2004).
Dokiya, M., “SOFC System and Technology”, Solid State Ionics, Vol. 152-153, pp. 383-392 (2002).
Hein, K. R. G., “New challenges for research in a changing energy market”, Proc. Combust. Inst., Vol. 29, pp. 393-398 (2002).
Hoogers, G., Fuel Cell Technology Handbook, CRC Press, Boca Raton, Florida (2003).
Larminie, J., and Dicks, A., Fuel Cell Systems Explained, John Wiely & Sons, Ltd, Chichester, England (2000).
Lehnert, W., Meusinger, J., and Thom, F., “Modeling of Gas Transport Phenomena in SOFC Anodes”, Journal of Power Sources, Vol. 87, pp. 57-63 (2000).
Kumar, A., and Reddy, R. G.., “Effect of Channel Dimensions and Shape in the Flow-Field Distributor on the Performance of Polymer Electrolyte Membrane Fuel Cells”, Journal of Power Sources, Vol. 113, pp. 11-18 (2003).
Kumar, A., and Reddy, R. G.., “Materials and Design Development for Bipolar/End Plates in Fuel Cells”, Journal of Power Sources, Vol. 129, pp. 62-67 (2004).
Mehta, V., and Cooper, J. S., “Review and Analysis of PEM Fuel Cell Design and Manufacturing”, Journal of Power Sources, Vol. 114, pp. 32-53 (2003).
Middelman, E., Kout, W., and Vogelaar, B., “Bipolar Plates for PEM Fuel Cells”, Journal of Power Sources, Vol. 118, pp. 44-46 (2003).
Munson, B. R., Young, D. F., and Okiishi, T. H., Fundamentals of Fluid Mechanics, 3rd ed. update, John Wiely & Sons, Inc., New York, USA (1998).
Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., and Yasuda, I., “Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell”, Journal of Power Sources, Vol. 86, pp. 423-431 (2000).
Yakabe, H., Ogiwara, T., Hishinuma, M., and Yasuda, I., “3-D Model Calculation for Planar SOFC”, Journal of Power Sources, Vol. 102, pp. 144-154 (2001).
Yamamoto, O., “Solid Oxide Fuel Cells: Fundamental Aspects and Prospects”, Electrochimica Acta, Vol. 45, pp. 2423-2435 (2000).
Yuan, J., Rokni, M., and Sundén, B., “Simulation of Fully Developed Laminar Heat and Mass Transfer in Fuel Cell Ducts with Different Cross-Sections”, International Journal of Heat and Mass Transfer, Vol. 44, pp. 4047-4058 (2001).
Yuan, J., Rokni, M., and Sundén, B., “Buoyancy Effects on Developing Laminar Gas Flow and Heat Transfer in a Rectangular Fuel Cell Duct”, Numerical Heat Transfer, Part A, Vol. 39, pp. 801-822 (2001).
Yuan, J., Rokni, M., and Sundén, B., “Combined Mass Suction and Buoyancy Effects on Heat Transfer and Gas Flow in a Fuel Cell Duct”, Numerical Heat Transfer, Part A, Vol. 43, pp. 341-366 (2003).
Yuan, J., Rokni, M., and Sundén, B., “Three-Dimensional Computational Analysis of Gas and Heat Transport Phenomena in Ducts Relevant for Anode-Supported Solid Oxide Fuel Cells”, International Journal of Heat and Mass Transfer, Vol. 46, pp. 809-821 (2003).
Peng, X. F., and Peterson, G. P., “Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels”, Experimental Heat Transfer, Vol. 7, pp. 249-264 (1994).
Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R., and Khaleel, M. A., “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks”, Journal of Power Sources, Vol. 113, pp. 109-114 (2003).
Singhal, S. C., “Advances in Solid Oxide Fuel Cell Technology”, Solid State Ionics, Vol. 135, pp. 305-313 (2000).
Singhal, S. C., “Solid Oxide Fuel Cells for Stationary, Mobile, and Military Applications”, Solid State Ionics, Vol. 152-153, pp. 405-410 (2002).
Stambouli, A. B., and Traversa, E., “Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 433-455 (2002).
Tanner, C. W., and Virkar, A. V., “A Simple Model for Interconnect Design of Planar Solid Oxide Fuel Cells”, Journal of Power Sources, Vol. 113, pp. 44-56 (2003).
Tu, H., and Stimming, U., “Advances, Aging Mechanisms and Lifetime in Solid-Oxide Fuel Cells”, Journal of Power Sources, Vol. 127, pp. 284-293 (2004).
Vielstich, W., Lamm, A., and Gasteiger, H. A., Handbook of Fuel Cells: Fundamentals Technology and Applications, John Wiely & Sons, Ltd, Chichester, England (2003).
Wen, T. –L., Wang, D., Chen, M., Tu, H., Lu, Z., Zhang, Z., Nie, H., and Huang, W., “Material research for Planar SOFC Stack”, Solid State Ionics, Vol. 148, pp. 513-519 (2002).
Winkler, W., and Koeppen, J., “Design and Operation of Interconnectors for Solid Oxide Fuel Cell Stacks”, Journal of Power Sources, Vol. 61, pp. 201-204 (1996).
Winkler, W., “The Influence of Mass Transfer on the Geometric Design of SOFC Stacks”, Journal of Power Sources, Vol. 86, pp. 449-454 (2000).
Zhu, B., “Advantages of Intermediate Temperature Solid Oxide Fuel Cells for Tractionary Applications”, Journal of Power Sources, Vol. 93, pp. 82-86 (2001).
Acumentrics, http://www.acumentrics.com/ .
Fuel Cells 2000, http://www.fuelcells.org/ .
Research Centre Jülich, http://www.fz-juelich.de/ .
Siemens Westinghouse, http://www.siemens.com/ .
Sulzer Hexis Ltd, http://www.hexis.com/ .
黃鎮江,燃料電池,初版,全華科技圖書股份有限公司,台北市(2003)。