| 研究生: |
黃建翔 Chien-Hsiang Huang |
|---|---|
| 論文名稱: |
侵臺颱風之高解析度全球模式模擬研究 Application of a High-Resolution Global Model to Forecast of Typhoons Impinging Taiwan |
| 指導教授: |
黃清勇
Ching-Yuang Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 位渦收支 、跨尺度全球模式 |
| 外文關鍵詞: | PV budget, MPAS |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球跨尺度天氣預報模式(MPAS)是由美國國家大氣研究中心(NCAR)所發展的新一代天氣預報模式,本研究使用MPAS經過兩次縮放的60-15-3公里可變解析度全球網格模型來模擬近年侵襲臺灣的三個颱風,包含蘇迪勒(2015)、梅姬(2016)、尼莎(2017),並且比較與區域模式WRF在相似解析度配置與相同物理參數化方法下的模擬能力。模擬結果顯示出MPAS除了具有較佳的模擬結果之外,能夠模擬出尼莎颱風(2017)突然向北偏折的路徑。由於各國預報單位大部分未預報出此向北偏轉之路徑,因此在本研究中,將會利用MPAS模式的模擬結果進行風場結構與位渦收支診斷分析,了解尼莎颱風的演變與轉向過程。
本研究透過風場結構分析和位渦收支診斷分析方法,對尼莎颱風的演變及動力過程進行研究,並對路徑偏轉的機制進行解釋。位渦趨勢收支的不對稱量分解顯示了颱風移動與路徑偏折的重要動力機制。當垂直平流作用和潛熱加熱作用的影響達到平衡時,路徑偏轉主要是由wavenumber-1 PV水平平流項所主導,並導致了颱,,,風路徑向北偏轉的趨勢。
此外,本研究也針對幾項可能影響此機制的因素進行實驗,包括臺灣地形高度、南海熱帶低壓氣旋與20-60天季內週期系統。結果顯示,移除臺灣地形高度後,颱風結構更加對稱,向北的不對稱水平平流作用減少,導致較微弱的路徑偏折,熱帶氣旋海棠提供向北駛流的西南氣流,並與颱風外圍環流輻合,增強東半側風速,使向北移動的分量增加。另一方面,大尺度季內週期之系統除了MJO影響南海低壓的形成,也包含太平洋高壓的強度,對尼莎颱風的路徑亦有重要的影響。
The Model for Prediction Across Scales (MPAS) is the non-hydrostatic global atmosphere model which developed by the National Center for Atmospheric Research (NCAR). This study uses a variable resolution mesh of 60-15-3 km with 3-km resolution targeted on Taiwan’s vicinity to simulate typhoons impinging Taiwan, including Soudelor (2015), Megi (2016) and Nesat (2017). The MPAS performance is compared with a regional model (WRF) in similar configuration of resolution and physical parameterization methods. The MPAS not only simulates a better result, but also captures the northward deflection of Typhoon Nesat (2017) near landfall in Taiwan. Several international prediction operational agencies failed to capture the track defection.
In this study, the analysis of wind field structure and diagnostic potential vorticity budget analyses are used to investigate the essential dynamics of the evolving typhoon and explain the result of track deflection. Asymmetry decomposition of PV tendency budget highlights the relative importance of dynamic forcing terms in PV tendency in steering the typhoon movement and track deflection. The track deflection is mainly induced by wavenumber-1 PV horizontal advection with northward tendency when the effects of vertical advection and the effects of latent heating are balanced. The result also shows the relationship between typhoon motion and steering flow.
Several sensitivity experiments are used to test the influence of Taiwan terrain, low-pressure system and large-scale system. Without the Taiwan terrain, the structure of typhoon is more symmetric and northward tendency by asymmetric horizontal advection is reduced, thus leading to a less deflection near Taiwan. Additionally, the southwestly flow provided by the vortex in the South China Sea (Tropical Storm Haitang) converges with the circulating currents in the periphery of Nesat, and enhance the northward component of movement. On the other hand, the large-scale system, such as the MJO and the subtropical high pressure, also have the effect on the movement of Nesat impinging Taiwan.
黃清勇、李志昕,2009:西北向侵臺颱風中心路徑打轉之模擬研究。大氣科學, 37(2),121-154。
謝佳宏,2017:地形作用對西行熱帶氣旋之影響:理想個案數值模擬。國立中央大學,大氣物理研究所,碩士論文,共103頁。
簡國基,2011:海棠颱風登陸臺灣前內核結構演變之研究。大氣科學,39(1),83-93。
Bender, M.A., R.E. Tuleya and Y. Kurihara, 1985: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130-155.
Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of an island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130–155.
Carr, L. E., and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46, 3177-3191.
Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion, J. Atmos. Sci., 59, 1317-1336.
Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255–1270.
Chen, T.-C., and C.-C. Wu, 2016: The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan. Mon. Wea. Rev., 144(9), 3109-3131.
Davis, C. A., and S. Low-Nam, 2001: The NCAR-AFWA tropical cyclone bogussing scheme. Report for the Air Force Weather Agency (AFWA), 12 pp.
Du, Q., V. Faber, and M. Gunzburger, 1999: “CentroidalVoronoi Tessellations: Applications and Algorithms”. SIAM Review, 41, 637 –676.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022.
Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975-990.
Fujiwhara, S., 1923: On the growth and decay of vertical systems. Quart. J. Roy. Meteor. Soc., 49, 75-104.
Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan., Ser. 3, 13, 106-110.
Gill, A. E., 1980. Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106(449), 447-462.
Grell, G. A. and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233-5250, doi:10.5194/acp-14-5233-2014.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 3022-3036.
Harris, L. M., and D. R. Durran, 2010: An idealized comparison of one-way and two-way grid nesting. Mon. Wea. Rev., 138, 2174-2187.
Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328-342.
Hong, S.–Y., and J.–O. J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong, S.–Y., Y. Noh, J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi:10.1175/MWR3199.1.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Q. J. R. M. Soc., 111, 877-946.
Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan, J. Atmos. Sci., 70, 1006-1022.
Hsu, L.-H., S.-H. Su, R. G. Fovell, and H.-C. Kuo, 2018: On typhoon track deflections near the east coast of Taiwan. Mon. Wea. Rev., 146, 1495–1510.
Huang, C.-Y., and Y.-L. Lin, 2008: The influence of mesoscale mountains on vortex tracks: shallow-water modeling study. Meteor. Atmos. Phys.,101, 1-20.
Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727.
Huang, C.-Y., I.-H. Wu, and L. Feng, 2016(a): A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks, J. Geophys. Res. Atmos., 121, doi:10.1002/ 2016JD025589.
Huang, C.-Y., C. A. Chen, S. H. Chen, & D. S. Nolan, 2016(b): On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. Journal of the Atmospheric Sciences, 73(8), 3157-3180.
Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-H. Hsu, 2017: Influences of large-scale flow variations on the track evolution of typhoons Morakot (2009) and Megi (2010): simulations with a global variable-resolution model. Mon. Wea. Rev., 145, 1691-1716.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
Jian, G.-J., and Wu, C.-C., 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136(2), 598-615.
Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139(7), 2163-2169.
Kuo, H.-C., R. T. Williams, J.-H. Chen, and Y.-L. Chen, 2001: Topographic effects on barotropic vortex motion: No mean flow. J. Atmos. Sci., 58, 1310-1327.
Liang, J., L. Wu, and, C.-C. Wu, 2011: Monsoonal influence on typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68(10), 2222-2235.
Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534–562.
Lin, Y.-L., S.-Y., Chen, C. M., Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection, J. Atmos. Sci., 62, 1849–1866.
Lin, Y.-L., and L. C. Savage, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range, J. Atmos. Sci., 68, 2095–2106.
Lin, A.-L., D.-J. Gu, C.-H. Li, et al. 2016. Impact of equatorial MJO activity on summer monsoon onset in the South China Sea. Chinese J. Geophysics, 59(1), 28-44.
Monin A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151, 163–187.
Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Bound. Layer Meteor. 119, 397–407. doi:10.1007/s10546-005-9030-8.
——, and ——, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895–912. doi:10.2151/jmsj.87.895.
Nguyen, H. V., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491.
——, and ——, 2014: Improvements to a tropical cyclone initialization scheme and impacts on forecasts. Mon. Wea. Rev., 142, 4340-4356.
Park, S. H., W. C. Skamarock, J. B. Klemp, L. D. Fowler, & M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Mon. Wea. Rev., 141(9), 3116-3129.
Park, S. H., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models using an idealized normal-mode baroclinic wave simulation. Mon. Wea. Rev., 142, 3614-3634.
Ringler, T. D., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: “Exploring a MultiresolutionModeling Approach within the Shallow-Water Equations”. Mon. Wea. Rev., 139, 3348 –3368.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. Tech. Note, 1-96.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.
Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578–1589, https://doi.org/10.1002/qj.2240.
——, and——, 2015: Idealized simulations of the effect of local and remote topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 141, 2045–2056, https://doi.org/10.1002/qj.2498.
——, and ——, 2016: Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with differentsteering flow strengths. Quart. J. Roy. Meteor. Soc., 142, 3211–3221, https://doi.org/10.1002/qj.2902.
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
Thompson, G., P. R. Field, R. M. Rasmussen, W. D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095–5115. doi:10.1175/2008MWR2387.1.
Tiedtke, M. I. C. H. A. E. L., 1989: A comprehensive mass flux scheme for cumulus parameterization in large–scale models. Mon. Wea. Rev., 117, 1779–1800.
Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010), J. Geophys. Res. Atmos., 118, 3292-3308, doi:10.1002/jgrd.50351.
Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 2599-2617.
Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899-1911.
Wu, L., and B. Wang, 2001a: Movement and vertical coupling of adiabatic baroclinic tropical cyclones. J. Atmos. Sci., 58, 1801-1814.
Wu, L., and B. Wang, 2001b: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 3639-3649.
Wu, L., J. L., and C.-C. Wu, 2011: Monsoonal Influence on Typhoon Morakot (2009). Part I: Observational Analysis, 2011, J. Atmos. Sci., 68, 2208-2221.
Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032–3050.
Xu, K.-M., and D. A. Randall, 1996: A Semi-empirical Cloudiness Parametrization for use in Climate Models. J. Atmos. Sci., 53, 3084-3102.
Xu, H., X. Zhang, and X. Xu, 2013: Impact of tropical storm Bopha on the intensity change of super Typhoon Saomai in the 2006 typhoon season. Advances in Meteorology.
Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan topography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193-3212.
——, and ——, 1993b: Interaction of typhoons with the Taiwan topography. Part
II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213–3233.
Zehnder, J. A., 1993: The influence of large-scale topography on barotropic vortex motion. J. Atmos. Sci., 50, 2519–2532.
Zehnder, J. A., and M. J. Reeder, 1997: A numerical study of barotropic vortex motion near a large-scale mountain range with application to the motion of tropical cyclones approaching the Sierra Madre. Meteor. Atmos. Phys., 64, 1–19.
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513.