跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃啓翔
Chi-Hsiang Huang
論文名稱: 使用 LSTM、GRU 和 SRU 演算法優化家用儲能系統充放電決策
Optimizing the charging strategy of home energy storage systems using LSTM, GRU and SRU algorithms
指導教授: 胡誌麟
Chih-Lin Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系在職專班
Executive Master of Communication Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 66
中文關鍵詞: 家用儲能系統時變電價發電量預測用電量預測電池充放電決策
外文關鍵詞: Home Energy Storage System, Time-Varying Electricity Price, Power Generation Forecast, Power Consumption Forecast, Battery Charging and Discharging Strategy
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球能源結構中綠能發電的比例不斷增加,但同時也帶來了能源供應的不穩定性和不可預測性的挑戰。為了解決這些問題,儲能系統成為了重要的解決方案。儲能系統可以暫時將綠能發電過剩的能量儲存起來,在發電量不足或電費較高的時候應急使用,妥善利用儲能系統可以平衡能源供需,維持電網穩定。這樣的措施有助於提高能源利用效率,實現更可持續的綠能發展。而在儲能系統上使用機器學習演算法,觀察和學習家戶用電的習慣,利用時間電價表改變充放電的時機,可進一步節省家戶用電費用的支出。
    本論文旨在比較Long Short-Term Memory (LSTM)、Gated Recurrent Unit (GRU)和Simple Recurrent Unit (SRU)這三種循環神經網絡Recurrent Neural Network (RNN)演算法應用在家用儲能系統用電量和發電量的預測準確性和訓練效能。實驗數據顯示,這三種演算法在訓練集和測試集的預測準確率不相上下,而在訓練時間上SRU可較 LSTM 快43%。訓練速度的提升,使SRU更適合處理複雜的應用計算。在採用演算法輔助充放電決策後,並考量了充放電損耗後,家用儲能系統可利用時間電價的優惠,再節省4.5%的電費支出。


    In recent years, the proportion of green energy power generation in the global energy structure has been increasing, but it has also brought challenges of instability and unpredictability of energy supply. In order to solve these problems, energy storage systems have become an important solution. Energy storage systems can temporarily store excess energy generated by green energy for emergency use when power generation is insufficient or electricity bills are high. Proper use of energy storage systems can balance energy supply and demand and maintain grid stability. Such measures can help improve energy efficiency and achieve more sustainable green energy development. Using machine learning algorithms on energy storage systems to observe and learn household electricity consumption habits, and using time electricity price tables to change the timing of charging and discharging, can further save household electricity costs.
    This paper aims to compare the electricity consumption of three types of Recurrent Neural Network (RNN) algorithms: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple Recurrent Unit (SRU) when applied to home energy storage systems. and power generation prediction accuracy and training efficiency. Experimental data shows that the prediction accuracy of these three algorithms in the training set and test set is similar, and SRU can be 43% faster than LSTM in training time. The improvement in training speed makes SRU more suitable for processing complex application calculations. When dealing with abnormal data, LSTM performs better in data prediction due to its more complete gating mechanism. After using algorithms to assist charging and discharging decisions, home energy storage systems can save another 4.5% in electricity bills.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第1章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 問題描述 3 1-4 研究內容 4 第2章 相關背景研究 6 2-1  LSTM 長短期記憶單元 7 2-2  GRU 門控循環單元 9 2-3  SRU 簡單循環單元 12 2-4  時變電價 14 2-5  綠能比率增加對發電量的影響 22 第3章 實驗平台設計 26 3-1  儲能系統容量規畫 26 3-2  供電來源 26 3-3  用電設備 28 3-4  電池損耗與電能轉換率 29 3-5  電費計算方式 29 第4章 實作與實驗結果 31 4-1  預測準確性比較 32 4-2  數據訓練效能比較 34 4-3  基於時間電價節省電費的效益 35 4-4  數據異常偏離時演算法的修正機制比較 38 第5章 結論與未來研究方向 45 5-1  結論 45 5-2  未來方向 46 參考文獻 47 附錄一 LSTM.PY 程式碼 51 附錄二 GRU.PY 程式碼 52 附錄三 SRU.PY 程式碼 54

    [1] F. Cheng, S. Willard, J. Hawkins, B. Arellano, O. Lavrova and A. Mammoli, "Applying battery energy storage to enhance the benefits of photovoltaics," in Proceedings of IEEE Energytech, Cleveland, OH, USA, 2012, pp. 1-5, doi: 10.1109/EnergyTech.2012.6304684.
    [2] B. Bian et al., "Model and Method of Capacity Planning of Energy Storage Capacity for Integrated Energy Station," presented at the 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 2022, pp. 410-415, doi: 10.1109/AEEES54426. 2022.9759785.
    [3] H. Shareef, M. S. Ahmed, A. Mohamed and E. Al Hassan, "Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers," IEEE Access, vol. 6, pp. 24498-24509, 2018, doi: 10.1109/ACCESS.2018.2831917.
    [4] Z. Zhao, W. C. Lee, Y. Shin and K. -B. Song, "An Optimal Power Scheduling Method for Demand Response in Home Energy Management System," IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1391-1400, Sept. 2013, doi: 10.1109/TSG.2013.2251018.
    [5] B. Zhou, R. Yang, C. Li, Y. Cao, Q. Wang and J. Liu, "Multiobjective Model of Time-of-Use and Stepwise Power Tariff for Residential Consumers in Regulated Power Markets," IEEE Systems Journal, vol. 12, no. 3, pp. 2676-2687, Sept. 2018, doi: 10.1109/JSYST.2017.2718046.
    [6] A. Dunbar, F. Tagliaferri, I. M. Viola and G. P. Harrison, "The impact of electricity price forecast accuracy on the optimality of storage revenue," in 3rd Renewable Power Generation Conference (RPG 2014), 2014, pp. 1-6, doi: 10.1049/cp.2014.0902.
    [7] Y. Ding, M. Xie, Q. Wu, & J. Østergaard, "Development of energy and reserve pre-dispatch and re-dispatch models for real-time price risk and reliability assessment", IET Generation Transmission and Distribution. 8. 10.1049/iet-gtd.2013.0822.
    [8] C. Vivekananthan, Y. Mishra and F. Li, "Real-time price based home energy management scheduler," 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015, pp. 1-1, doi: 10.1109/PESGM.2015.7286061.
    [9] A. Mishra, D. Irwin, P. Shenoy, J. Kurose and Ting Zhu, "SmartCharge: Cutting the electricity bill in smart homes with energy storage," 2012 Third International Conference on Future Systems: Where Energy, Computing and Communication Meet (e-Energy), Madrid, 2012, pp. 1-10, doi: 10.1145/2208828.2208857.
    [10] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 15 Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
    [11] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM," in Proc. 9th Int. Conf. Artif. Neural Netw. (ICANN), 1999, pp. 850–855.
    [12] S. Siami-Namini, N. Tavakoli and A. S. Namin, "The Performance of LSTM and BiLSTM in Forecasting Time Series," 2019 IEEE International Conference on Big Data , Los Angeles, CA, USA, 2019, pp. 3285-3292, doi: 10.1109/BigData47090.2019.9005997.
    [13] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," ArXiv abs/1412.3555 (2014).
    [14] Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An empirical exploration of recurrent network architectures." in International Conference on Machine Learning, 2015, pp. 2342-2350.
    [15] Lei, T., Zhang, Y., Wang, S. I., Dai, H., & Artzi, Y. (2017). Simple recurrent units for highly parallelizable recurrence. arXiv170902755L 2017/09.
    [16] J. Pan, T. Lei, K. Kim, K. J. Han and S. Watanabe, "SRU++: Pioneering Fast Recurrence with Attention for Speech Recognition," 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 7872-7876, doi: 10.1109/ICASSP43922.2022.9746187.
    [17] "Understanding GRU Networks," Towards Data Science, [Online]. Available: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be. [Accessed: 10-Jun-2024].
    [18] "LSTM及GRU網絡結構詳解與Pytorch實現," 博客園, [Online]. Available: https://www.cnblogs.com/bamtercelboo/p/8933350.html. [Accessed: 10-Jun-2024].
    [19] J. Yang, T. Li, G. Liang, W. He and Y. Zhao, "A Simple Recurrent Unit Model Based Intrusion Detection System With DCGAN," IEEE Access, vol. 7, pp. 83286-83296, 2019, doi: 10.1109/ACCESS.2019.2922692.
    [20] "All Electricity is Not Priced Equally: Time-Variant Pricing 101," Energy Exchange, 27-Jan-2015. [Online]. Available: https://blogs.edf.org/energyexchange/2015/01/27/all-electricity-is-not-priced-equally-time-variant-pricing-101/. [Accessed: 10-Jun-2024].
    [21] "Time-of-Use Means It's Time for Storage," Renewable Energy World, [Online]. Available: https://www.renewableenergyworld.com/storage/timeofuse-means-its-time-for-storage/. [Accessed: 10-Jun-2024].
    [22] "How Ontario's COVID-19 Recovery Rate Impacted Electricity Usage," BizX Magazine, [Online]. Available: https://bizxmagazine.com/ontario-covid-19-recovery-rate-electricity/. [Accessed: 10-Jun-2024].
    [23] Burns, Kelly & Mountain, Bruce, 2021. "Do households respond to Time-Of-Use tariffs? Evidence from Australia," Energy Economics, Elsevier, vol. 95(C).
    [24] "能源轉型白皮書," 經濟部能源署, [Online]. Available: https://www.moeaea.gov.tw/ECW/populace/content/Content.aspx?menu_id=13178&sub_menu_id=13180. [Accessed: 10-Jun-2024].
    [25] "Duck curve," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Duck_curve. [Accessed: 10-Jun-2024].
    [26] Renoald Albert, J., Shunmugham Vanaja, D. "Solar Energy Assessment in Various Regions of Indian Sub-continent," IntechOpen, doi: 10.5772/intechopen.95118 (2021)
    [27] "立法院三讀通過再生能源發展條例修正案," 經濟部, [Online]. Available: https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=100218. [Accessed: 10-Jun-2024].
    [28] I. Javeed,, R. Khezri, A. Mahmoudi, A. Yazdani, G.M. Shafiullah, "Optimal Sizing of Rooftop PV and Battery Storage for Grid-Connected Houses Considering Flat and Time-of-Use Electricity Rates," Energies 2021, 14, 3520. https://doi.org/10.3390/en14123520

    QR CODE
    :::