跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳紹良
Shaun-Laing Chen
論文名稱: 以微波電漿化學氣相沉積法成長奈米碳管之研究
Study of Carbon Nanotube Synthesized by MP-CVD
指導教授: 黃豐元
Fuang-Yuan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 94
中文關鍵詞: 田口法微波電漿化學氣相沉積奈米碳管
外文關鍵詞: microwave plasma chemical vapor deposition, Taguchi method, carbon nanotube
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本論文利用微波電漿化學氣相沉積(MP-CVD)法以Fe、Co、Ni為觸媒,可以在基板溫度400℃得到密度高且垂直基板方向成長的奈米碳管。利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、原子力顯微鏡(AFM)、拉曼光譜儀(Raman Spectroscopy)和I-V量測儀分析奈米碳管特性。
    由穿透式電子顯微鏡之高解析觀察得知,本實驗所成長的奈米碳管屬中空竹節狀之多壁奈米碳管,中空竹節形狀為圓錐形,管徑約30~100nm,在奈米碳管頂部及底部都可發現觸媒金屬,頂部的觸媒為不規則形,而底部的觸媒為圓錐形,和中空結構相似,推測其成長機制為碳原子沿著圓錐形觸媒表面往上析出堆積而成奈米碳管。在前處理製程下觸媒薄膜經分裂成核,形成奈米級的顆粒,並非圓錐形,而在成長過程中才會變形為圓錐狀,文中對以微波電漿化學氣相沉積法成長奈米碳管之機制做探討。
    先利用單因子實驗探討製程參數對奈米碳管成長速率的影響,製程參數包括:電漿功率、前處理電漿功率、成長電漿功率、基板溫度、工作壓力、N2流量、CH4比例、前處理時間、及成長時間。再應用田口實驗計劃法,分別以長速率及前處理後表面粗糙度為評估製程之輸出回應,探討各因子對奈米碳管成長特性的影響,找尋最佳之成長參數。以奈米碳管成長速率為實驗輸出回應的望大分析,顯示成長時間、前處理時間、氮氣流量、工作壓力為較重要之一半控制因子,而確認實驗,逹到製程最佳化的目標。而以前處理後表面粗糙度為實驗輸出回應的望小特性分析顯示,重要參數望依序為電漿功率、工作壓力、前處理時間,望小特性分析之確認實驗,並未逹到預期目標,主要原因為在前處理過程中,會有少數奈米碳管的生成,導致原子力顯微鏡之量測產生偏差。
    奈米碳管可選擇性成長在邊長5μm的方形陣列,量測場發射特性,起始電壓為130伏特,在3伏特/微米(V/μm)的電場下可以得到4.5mA/cm2的電流密度。利用半導體製程將奈米碳管製成三極場發射元件,可利用閘極控制場發射電流密度。另外已成功在0.1μm 的觸媒金屬點上成長單根奈米碳管。
    將奈米碳管做抗氧化及高溫退火處理,在高溫氧化的處理過程中,雖可將非晶質碳除去,得到純化的奈米碳管但是也會消耗部份奈米碳管。對奈米碳管做高溫退火,其直徑會隨溫度升高而變大,在頂端之觸媒顆粒有膨脹現象,推測原因為奈米碳管在高溫下碳原子會有重組的效應。


    ABSTRACT
    In this study, high-density vertical carbon nanotubes were grown on Si substrate at 400℃ by microwave plasma chemical vapor deposition with Fe, Co, and Ni as catalyst. The characterization of the carbon nanotubes were carried out by SEM, TEM, AFM, Raman, and I-V measurement.
    By the observation with high resolution TEM, the appearance of carbon nanotubes were bamboo-shaped and range from 30-100nm in diameter. The bamboo-shaped carbon nanotubes were in a shape of cone and were multi-walled. The catalyst metals were on both top and bottom of the carbon nanotubes. The top metal was with irregular shape and the bottom metal was cone-like similar with the hole-bamboo structure. Base on the above results, we can suppose the grown mechanism of carbon nanotubes achieved by the pill up of carbon atoms with upward movement along the surface of the cone-like catalyst. The catalyst film were separated into nucleation in the pretreatment step, the nanoparticle catalyst were transform into cone-like shape during grown process. In this study, we well focus on the influence of MP-CVD on the grown mechanism of carbon nanotubes.
    Single factor experiment was used to study the effects of process parameters on the grown rate of carbon nanotubes. These process parameters includes: source power, pretreatment source power, growth source power, growth temperature, working pressure, flow rate of N2, content of CH4, pretreatment time and growth time. Beside, Taguchi method was used for the optimization of process conditions by the study of the influences of various factors on the growth of carbon nanotubes. The growth rate and the roughness of pretreatment sample were evaluated and served as output response. The larger-the-better analysis which uses growth rate of carbon nanotubes as experiment output response indicates that growth time, pretreatment time, flow rate of N2, working pressure were important half control factors. The confirmation experiment results are as expected. The smaller-the-better analysis which uses the roughness after pretreatment as output response indicates that plasma source power, working pressure, pretreatment time which are in the order of importance. The results of the smaller-the-better analysis are not as expected. This maybe caused by the formation of carbon nanotubes during pretreatment process, which results the error of the measure by AFM.
    Carbon nanotubes also can selectively grow in the array of 5μm square. The measured characteristics of field emission of carbon nanotubes shows the threshold voltage is 130V, and a current density of 4.5mA/cm2 can be obtained under a field of 3V/μm. These pole field emission devices formed by carbon nanotubes can deliver different current density by the control of the gate. Besides, a single carbon nanotube was successfully grown on the catalyst metal with dimension of 0.1μm.
    The oxidation process at high temperature can exclude amorphous carbon and purify the carbon nanotubes, but some part of the carbon nanotubes were also consumed. The diameter of the carbon nanotubes will become larger after higher temperament annealing. The swelling catalyst metal particles on the top of the grown carbon nanotubes is due to the reorganization of carbon atoms at high temperament.

    目錄                          頁 中文摘要……………………………………………………………i 英文摘要……………………………………………………………iv 致謝…………………………………………………………………vii 目錄…………………………………………………………………viii 表目錄………………………………………………………………x 第一章 諸論………………………………………………………1 1.1 前言…………………………………………………………1 1.2 奈米碳管的晶體結構………………………………………3 1.3 奈米碳管的獨特性質及其應用潛力………………………7 1.4 奈米碳管的製備方式………………………………………14 1.5 奈米碳管的成長機制………………………………………18 第二章 實驗方法…………………………………………………20 2.1 MP-CVD 成長奈米碳管結構分析與鑑定…………………21 2.2 單因子實驗…………………………………………………22 2.3 田口實驗計劃法……………………………………………23 2.4 奈米碳管在微電子應用……………………………………25 2.5 奈米碳管的成長步驟及特性分析…………………………26 2.6 實驗儀器簡介………………………………………………28 第三章 結果與討論………………………………………………32 2.1 MP-CVD 成長奈米碳管之結構分析與鑑定………………33 2.2 單因子實驗分析奈米碳管成長速率及直徑………………40 2.3 田口法望目分析奈米碳管成長特性………………………50 2.4 奈米碳管場發射測試及內連線應用………………………62 2.5 奈米碳管的特性測試………………………………………65 第四章 結論………………………………………………………68 參考文獻……………………………………………………………70 表目錄 Table………………………………………………………………...Page 1.1 Isomers made of carbon………………………………………80 1.2 Classification of carbon nanotube………… …………………80 1.3 Parameters for carbon nanotube.…………………...…………81 1.4 Comparison of LCD with FED…………………….…………82 1.5 Comparison of conductors……………………………………82 2.1 Parameter design for single experiment analysis……………..83 2.2 Design of factor and level for carbon nanotube growth ……..84 2.3 Parameter design for carbon nanotube growth…...….……….85 2.4 Design of factor and level for Ni film Pretreatmenr.…………86 2.5 Parameter design for Ni film Pretreatmenr…………………...86 3.1 Single factor experiment distribution of carbon nanotube growth rate and diameter….………………………………..87 3.2 Response table for single factor experiment of carbon nanotube growyh rate………………………………………88 3.3 Parameter conditions for the better of carbon nanotube growth rate……………………………………………….…88 3.4 Distribution of carbon nanotube diameter……………………89 3.5 Distribution of carbon nanotube growth rate…………………90 3.6 Response table for larger-the-better analysis of carbon nanotube growth rate ………………………………………91 3.7 Interaction s between factor G and F (S/N ratio)………….….92 3.8 Interaction s between factor F and D (S/N ratio)……………..92 3.9 Interaction s between factor G and D (S/N ratio)………….…92 3.10 Parameter conditions for confirmation experiment (larger-the-better analysis of carbon nanotube growth)……….93 3.11 Distribution of Ni film pretreatment…………………………..94 3.12 Response table for smaller-the-better analysis of Ni film pretreatment……………………………………..…….94

    [1] http://jcrystal.com/steffenweber/
    [2] http://www.rpi.edu/dept/materials/COURSES/NANO/
    [3] http://www.ipt.arc.nasa.gov/gallery.html
    [4] M. L. Cohen, “Nanotubes, nanoscience,and nanotechnology,”
    Materials Science and Engineering C, 15 (2001) 1-11
    [5] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical propertie
    of carbon nanotubes, Imperial College Press, (1998)
    [6] K. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley,
    Nature, 318 (1985) 162
    [7] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354
    (1991) 56
    [8] M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G.
    Santiesteban,“Catalytic growth of carbon microtubules with
    fullerene structure,” Appl. Phys. Lett., 62 (1993) 202
    [9] M. Endo, K. Takeuchi, K.Takahashi, H. W. Kroto, and A.
    Sarkar,“Pyrolytic carbon nanotubes form vapor-grown carbon
    fibers,” Appl. Phys. Lett., 33 (1995) 873
    [10]S. Ihara, S. Itoh, “Helically coiled and toroidal cage forms of
    graphitic carbon,” Carbon, 33 (1995) 931
    [11]H. Cui, O. Zhou, and B. R. Stoner, “Deposition of aligned bamboo-like
    carbon nanotubes via microwave plasma enhanced chemical vapor
    deposition,” Journal of Applied Physics, 88 (2000) 6072
    [12]S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and
    J. B. Nagy, “A formation mechanism for catalytically grown
    helix-shaped graphite nanotubes,” Science, 265 (1994) 635
    [13]X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chem, “Synthesis of
    multi-walled carbon nanotubes by microwave plasma-enhanced chemical
    vapor deposition,” Thin Soild Films, 390 (2001) 130
    [14]Y. Wen, and Z. Shen, “Synthesis of regular coiled carbon nanotubes
    by Ni-catalyzed pyrolysis of acetylene and a growth mechanism
    analysis,” Carbon, 39 (2001) 2369
    [15]W. Hoenlein, “New prospects for microelectronics: Carbon
    Nanotubes,” Jpn. J. Appl. Phys., 41 (2002) 4370
    [16]M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon
    nanotubes,“ Carbon, 33 (1995) 883
    [17]R. Gao, Z. L. Wang, and S. Fan, J. Phys. Chem. B., 104 (2000) 1227
    [18]A. Thess, R. Cee, N. P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu,
    Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G.Scaseria, J.
    E. Fischeo, R. E. Smalley, Science, 273 (1996) 483
    [19]S. Frank, P. Poncharal, Z. L. Wang, Walt A. de Heer, “Carbon nanotube
    quantum resistors,“ Science, 280 (1998) 1774
    [20]F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E.
    Unger, W. Honlein, “ Carbon nanotubes in interconnect applications,
    “ Microelectronic Engineering, 64 (2002) 399-408
    [21]G. Overney, W. Zhong, and D. Z. Tomanek, Phys. D, 27 (1993) 93
    [22]E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos, M. M. J.
    Treacy, Phys. Rev. B., 58 (1998) 14013
    [23]M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 318 (1996)
    678
    [24]M. F. Yu, B. S. Files, S.Arepalli, R. S. Ruoff, Phys. Rev. Lett., 84
    (2000) 5552
    [25]Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang, “Field
    emission from nanotube bundle emitters at low field,” Appl. Phys.
    Lett., 70 (1997) 3308
    [26]A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek,
    P. Nordlander, D. T. Colbert, and R. E. Smalley, ”Unraveling
    Nanotubes: field emission from an atomic wire,” Science, 269 (1995)
    1550
    [27]W. A. D. Heer, A. Chatelain, and D. Ugarte, ”A carbon nanotube
    field-emission electron source,” Science, 270 (1995) 1179
    [28]Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, and E. W. Seeling,
    “A nanotube-based field-emission flat panel display,” Appl. Phys. Letts., 72 (1998) 2912
    [29]W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, “Large current
    density from carbon nanotube field emitters,” Appl. Phys. Lett., 75
    (1999) 873
    [30]W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han,
    Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. m. Kim, ”Fully
    sealed, high-brightness carbon-nanotube field-emission display,”
    Appl. Phys. Letts., 75 (1999) 3129
    [31]P. G. Collins, and A. Zettl, “Unique characteristics of cathode
    carbon-nanotube-matrix field emitters,” Phys. REV. B, 55 (1997) 9391
    [32]H. J. Kim, J. H. Han, W. S. Yang, J. B. Yoo, C. Y. Park, I. T. Han,
    Y. J. Park, Y. W. Jin, J. E. Jung, N. S. Lee, and J. M.
    Kim, ”Fabrication of field emission triode using carbon nanotubes,”
    Materials Science and Emgineering C, 16 (2001) 27
    [33]J. M. Bonard, H. Kind, T. Stockli, and L. O. Nilsson, “Field emission
    from carbon nanotubes: the first five years,” Solid-State
    Electronics, 45 (2001) 893
    [34]A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays:
    a critical review,” Solid-State Electronics, 45 (2001) 963
    [35]C. E. Hunt, J. T. Trujillo, W. J. Orvis, “Structure and electrical
    characteristics of silicon field-emission microelectronic devices,
    “IEEE Transactions on Electron Devices,” 38 (1991) 2309
    [36]R. B. Marcus, T. S. Ravi, T. Gmitter, H. H. Busta, J. T. Niccum, K.
    k. Chin, and D.Liu, “Atomically sharp silicon and metal field
    emitters,” IEEE Transactions on Electron Devices, 38 (1991) 2289
    [37]R. E. Burgess, R. Kroemer, “Corrected values of Fowler-Nordheim
    Field emission function v(x) and s(y),” Physical Review, 90 (1953)
    515
    [38]E. A. Adler, Z. Bardai, R. Forman, D. M. Goebel, R. T. Longo, and M.
    Sokolich, “Demonstration of Low-Voltage Field Emission, ”IEEE
    Transactions on Electron Devices,” 38 (1991) 2304
    [39]B. Q. Wei, R. Vajtal, and P. M. Ajayan, “Reliability and current
    carrying capacity of carbon nanotubes,” Appl. Phys. Lett., 79 (2001)
    1172
    [40]H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon
    nanotubes,” Carbon, 39 (2001) 1447
    [41]A. K. M. F. Kibria, Y. H. Mo, K. S. Park, K. S. Nahm, and M. H. Yun,
    “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown
    carbon nanotubes in KOH medium,” International Journal of Hydrogen
    Energy, 26 (2001) 823
    [42]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune,
    and M. J. Heben, “Storage of hydrogen in single-walled carbon
    nanotubes,” Nature, 386 (1997) 377
    [43]S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature
    transistor based on a single carbon nanotube,” Nature, 393 (1998)
    49
    [44]C. Thelander, M. H. Magnusson, K. Deppert, L. Samuelson. P. R.
    Poulsen, J. Nygard, and J. Borggreen, “Gold nanoparticle
    single-electron transistor with carbon nanotube leads,” Appl. Phys.
    Lett., 79 (2001) 2106
    [45]P. W. Chiu, G. S. Duesberg, U. D. Weglikowska, and S. Roth,
    “Interconnection of carbon nanotubes by chemical
    functionalization,” Appl. Phys. Lett., 80 (2002) 3811
    [46]Y. Homma, T. Yamashita, Y. Kobayashi, and T. Ogino, “Interconnection
    of nanostructures using carbon nanotubes,” Physica B, 323 (2002) 122
    [47]D. W. Austin, A. A. Puretzky, D. B. Geohegan, P. F. Britt, M. A.
    Guillorn, and M. L. Simpson, “The electrodeposition of metal at
    metal/carbon nanotube junctions,” Chem. Phys. Lett., 361 (2002) 525
    [48]Y. S. Han, J. K. Shin, and S. T. Kim, “Synthesis of carbon nanotube
    bridges on patterned silicon wafers by selective lateral growth,”
    Journal of Applied Physics, 90 (2001) 5731
    [49]Y. H. Lee, Y. T. Jang, C. H. Choi, E. K. Kim, and B. K. Ju, D. H. Kim,
    C. W. Lee, and S. S. Yoon, ”Direct nano-wiring carbon nanotube using
    growth barrier: a possible mechanism of selective lateral growth,”
    Journal of Applied Physics, 91 (2002) 6044
    [50]A. Ural, Y. Li, and H. Dai, “Electric-field-aligned growth of
    single-walled carbon nanotubes on surfaces,” Appl. Phys. Lett., 81
    (2002) 3464
    [51]S. J. Tans, M. H. Devoret, H. Dal, A. Thess, R. E. Smalley, L. J.
    Geerligs, and C. Dekker, “Individual single-wall carbon nanotubes
    as quantum wires,” Nature, 386 (1997) 474
    [52]N. Miura, H. Ishii, A. Yamada, and M. Konagai, “Application of
    carbonaceous material for fabrication of nano-wires with a scanning
    electron microscopy,” Jpn. J. Appl. Phys., 35 (1996) 1089
    [53]M. R. Diehl, S N. Yaliraki, R. A. Beckman, M. Barahona, and J. R.
    Heath,” Self-assembled, deterministic carbon nanotube wiring
    networks,” Angew. Chem. Int. Ed. 41 (2002) 353
    [54]J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber,
    “Structural andfunctional imaging with carbon nanotube AFM
    probes,” Progress in Biophysics & Molecular Biology, 77 (2001) 110
    [55]A. T. Woolley, C. L. Cheung, J. H. Hafner, and C. M.
    Lieber, ”Structural biology with carbon nanotube AFM probes,”
    Chemistry & Biology, 7 (2000) 193
    [56]H. Dai, J. H. Hafner, A. G. Rinzier, D. T. Colbert, and E. Smalley,
    “Nanotubes as nanoprobes in scanning probe microscopy,” Nature, 384
    (1996) 147
    [57]S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, “Covalently functionalized nanotubes as nanometresized probes in
    chemistry and biology,” Nature, 394 (1998) 52
    [58]G. Zhou, W. Duan, and B. Gu, “First-principles study on morphology
    and mechanical properties of single-walled carbon nanotube,” Chem.
    Phys. Lett., 19 (2001) 344
    [59]M. B. Nardelli, J. L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao,
    and J. Bernholc, “Mechanical properties, defects and electronic
    behavior of carbon nanotubes,” Carbon, 38 (2000) 1703
    [60]J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho,
    and H. Dai, “Nanotube molecular wires as chemical sensors,”
    Science,287 (2000) 622
    [61]Y. S. Park, K. S. Kim, H. J. Jeong, W. S. Kim, J. M. Moon, K. H. An,
    D. J. Bae, Y. S. Lee, G. S. Park and Y. H. Lee, “Low pressure synthesis
    of single-walled carbon nanotubes by arc discharge,” Synthetic
    Metals, 126 (2002) 245
    [62]H. J. Lai, M. C. C. Lin, M. H. Yang and A. K. Li, “Synthesis of carbon
    nanotubes using polycyclic aromatic hydrocarbons as carbon sources
    in an arc discharge,” Materials Science and Engineering C, 16 (2001)
    23
    [63]H. Zeng, L. Zhu, G. Hao, and R. Sheng, “Synthesis various forms of
    carbon nanotubes by AC arc discharge,” Carbon, 36 (1998) 259
    [64]C.Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. D. L. Chapelle,
    S. Lefrant, P. Deniard, R. Lee, and J. E. Fisxher, “Large-scale
    production of single-walled carbon nanotubes by the electric-arc
    technique,” nature, 388 (1997) 756
    [65]M. Ishigami, J. comings, A. Zettl, S. Chen, “A simple method for the
    continuous production of carbon nanotubes,” Chem. Phys. Lett., 319
    (2000) 457
    [66]A. Thess, R. Cee, N. P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu,
    Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G.Scaseria, J.
    E. Fischeo, R. E. Smalley, Science, 273 (1996) 483
    [67]B. I. Yakobson and R. E. Smalley, American Scientist, 85 (1997) 324
    [68]S. Zhu, C. H. Su, J. C. Cochrane, S. Lehoczky, Y. Cui and A. Burger,
    “Growth oriention of carbon nanotubes by thermal chemical vapor  
    deposition,” Journal of Crystal Growth, 234 (2002) 584
    [69]Y. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim,
    Y. H. Lee, W. B. Choi, N. S. Lee, J. M. Kim, Y. G. Choi, and S. C.
    Yu, ”Synthesis of uniformly distributed carbon nanotubes on a large
    area of si substrates by thermal chemical vapor deposition,” Appl.
    Phys. Lett., 75 (1999) 1721
    [70]C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, Y. H. Lee,
    W. B. Choi, N. S. Lee, G. S. Park, and J. M. kim, “Synthesis of aligned
    carbon nanotubes using thermal chemical vapor deposition,” Chem.
    Phys. Lett., 312 (1999) 461
    [71]C. J. Lee, J. Park, S. Y. Kang, and J. H. Lee, “Growth of well-aligned
    carbon nanotubes on a large area of Co-Ni co–deposition silicon oxide
    substrate by thermal chemical vapor deposition,” Chem. Phys. Lett.,
    323 (2000) 554
    [72]C. J. Lee, J. H. Park, and J. Park, “Synthesis of bamboo-shaped
    multiwalled carbon nanotube using thermal chemical vapor
    deposition,” Chem. Phys. Lett., 323 (2000) 560
    [73]Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, J. M. Kim, “Low temperature synthesis of carbon nanotube by microwave plasma-enhanced chemical vapor deposition, ” Synthetic Metals 108 (2000) 159-163
    [74]X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi-walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” Thin Solid Films, 390 (2001) 130-133
    [75]J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, I. T. Han, S. Yu, W. Yi, G. S. Park, M. Yang, N. S. Lee, and J. M. Kim, “Effects of growth parameters on the selective area growth of carbon nanotubes,” Thin Solid Films, 409 (2002) 126
    [76]Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition,” Diamond and Related Materials, 11 (2002) 59
    [77]U. Kim, R. Pcionek, D. M. Aslam, and D. Tomanek, “Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition,” Diamond and Related Materials, 10 (2001) 1947
    [78]W. D. Zhang, J. T. L. Thong, W. C. Tjiu, and L. M. Gan, “Fabrication of vertically aligned carbon nanotubes patterns by chemical vapor deposition for field emitters,” Diamond and Related Materials, 11 (2002) 1638
    [79] S. H. Tsai, F.K. Chiang, T. G. Tsai, F. S. Shieu, and H. C. Shin,” Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation,” Thin Solid Films, 366 (2000) 11-15
    [80]S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, “Well-aligned carbon nitride nanotubes synthesized in alumins by electron cyclotron resonance chemical vapor deposition,” Appl. Phys. Lett., 74 (1999) 197
    [81]J. H. Han, B. S. Moon, W. S. Yang, J. B. Yoo, and C. Y. Park, “Growth characteristics of carbon nanotubes by plasma enhanced
    hot filament chemical vapor deposition,” Surface and acoating Technology, 131 (2000) 93-97
    [82]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal,
    and P. N. Provencio, “Synthesis of largr arrays of well-aligned
    carbon nanotubes on dless,” Science, 282 (1998) 1105-1107
    [83]R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, “Formation of filamentous carbon from iron, cobalt, and chromium
    catalyzed decomposition of acetylene,” J. Catal., 30 (1973) 86
    [84]A. Oberlin, M. Endo, T. Koyama, “High resolution electron microscopy
    of graphizable carbon fiber prepared by benzene decomposition,” Jap.
    T. Appl. Phys., 16 (1997) 119.
    [85]S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey,
    and F. Derbyshire, “Model of carbon nanotube growth through chemical
    vapor deposition,” Chem. Phys. Lett., 315 (1999) 25
    [86]A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and
    M. L. Simpson, “Transition between base and tip carbon nanofiber
    growth modes, “ Chem. Phys. Lett., 356 (2002) 527
    [87]A. P. Burden, and S. R. P. Silva, “Fullerene and nanotube formation
    in coll terrestrial “dusty plasmas”,” Appl. Phys. Lett., 73 (1998)
    3082
    [88]W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W.Y. Zhou,
    R.A. Zhao, G. Wang, “ Large-scale synthesis of aligned carbon
    nanotubes, “ Science, 274 (1996) 1701-1703.
    [89]Y. Y. Wei, G. Eres, V. I. Merlculov, and D. H. Lowndes, “Effect area
    chemical vapor deposition,” Appl. Phys. Lett., 78 (2001) 1394
    [90]Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H. Lee, B. S. Lee,
    and D. C. Chung, “Effect of surface morphology of Ni thin film on
    the growth of aligned carbon nanotubes by microwave plasma-enhanced
    chemical vapor deposition,” Journal of Applied Physics, 88 (2000)
    4898
    [91]E. F. Kukovitsky, S. G. Lvov, N. A. Sainov, V. A. Shustov, and L. A.
    Chernozatonskii, “Correlation between metal catalyst particle size
    and carbon nanotube growth,” Chem. Phys. Lett. 355 (2002) 497
    [92]丁志華、戴寶通,“田口實驗計劃法簡介(I)(II)”奈米通訊第八卷第三

    [93]J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam,
    “Patterned selective growth of carbon nanotubes and large field
    emission from vertically well-aligned carbon nanotube field emitter
    arrays,” Appl. Phys. Lett., 78 (2001) 901
    [94]D. C. Li, L. Dai, S. Huang, A. W. H. Mac, and Z. L. Wang, “Structure
    and growth of aligned carbon nanotube films by pyrolysis,” Chem. Phys. Lett., 316 (2000) 349

    QR CODE
    :::