| 研究生: |
張家嘉 Chia-chia Chang |
|---|---|
| 論文名稱: |
非鐵金屬二次冶煉業戴奧辛生成機制與物種分佈探討-以銅及鋁冶煉業為例 Characteristics of PCDD/F Emissions from Nonferrous Secondary Metal Smelting Industries |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鋁二次冶煉業 、戴奧辛 、銅二次冶煉業 |
| 外文關鍵詞: | secondary aluminum smelting industry, dioxin, secondary copper smelting industry |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
戴奧辛為已知毒性最強之持久性有機污染物之一,近年來先進國家陸續進行非鐵金屬二次冶煉業煙道氣及廢棄物戴奧辛濃度及物種分佈探討,以瞭解全廠戴奧辛之生成及流佈狀況,提供源頭減量及製程改善之建議。研究對象銅二次冶煉業使用三組不同原料配比進行比對,三組銅合金產品原料以「電解銅」為主要原料、以「廠內回收之銅廢料」為主要原料及以「廠外回收之銅廢料」為主要原料;鋁二次冶煉業同樣使用三組不同原料配比進行比對,三組鋁合金產品原料以「鋁切削料」為主要原料、以「輪胎之鋁圈」為主要原料及以「鋁下腳料」為主要原料。在使用不同原料進行冶煉情況下,兩產業之煙道氣及廢棄物戴奧辛各物種濃度分佈百分比相似,同一物種毒性當量濃度貢獻度亦相近。PCDD佔總毒性當量濃度貢獻量之1~2成,PCDF佔總毒性當量濃度貢獻量之8~9成,PCDF之同源物為優勢物種。PCDD以12378-PeCDD及2378-TCDD為優勢物種,PCDF以23478-PeCDF及234678-HxCDF為優勢物種。比較銅二次冶煉業及鋁二次冶煉業戴奧辛濃度,銅二次冶煉業之生成濃度(2.92~12.4 ng I-TEQ/Nm3)明顯較鋁二次冶煉業(0.14~0.25 ng I-TEQ/Nm3)為高,兩產業因戴奧辛物化特性,易於微粒表面生成,因此多存在於固相。隨著空氣污染防制設備收集煙道氣中微粒,固相戴奧辛濃度也隨之下降(0.13~0.40 ng I-TEQ/Nm3),使後續煙道氣排放戴奧辛能符合法規標準(1.0 ng I-TEQ/Nm3),相對而言,集塵灰之PCDD/F毒性當量濃度為0.466~28.8 ng I-TEQ/g,已超過有害事業廢棄物認定標準1.0 ng I-TEQ/g,需注意其後續處理。
Dioxin is one of the most toxic persistent organic pollutants (POPs). In recent years, many countries are investigating the concentrations and distributions of dioxin in the stack gas and wastes from nonferrous secondary metal smelting industries to understand its generation and distribution. With the above-mentioned information, they are able to make suggestions for the source reduction and process modification. This study aims to compare the characteristics of dioxin generation from secondary copper smelting industry with three different feedstock compositions, which are primarily composed of copper, copper scrap recycling in plant and copper scrap recycling plant outside. As for aluminum secondary metal smelting industry, the characteristics of dioxin formation with three feedstock compositions that mainly consists of aluminum cutting material, tire aluminum ring and aluminum scraps are investigated. Even if the feedstock ratios are different, the results indicate that the contributions of dioxin congeners in stack gas and waste are similar. Moreover, the international toxicity equivalency concentration contributed by the same species are close as well. 10-20% of the international toxicity equivalency concentration is from PCDD while the rest is attributed to PCDF. PCDF is the dominating species. The dominating species for PCDD and PCDF are 12378-PeCDDand 2378-TCDD, and 23478-PeCDF and 234678-HxCDF, respectively. Furthermore, the dioxin concentration from copper secondary metal smelting industry (2.92~12.4 ng I-TEQ/Nm3) is significantly higher than that from aluminum secondary metal smelting industry (0.14~0.25 ng I-TEQ/Nm3). For both industries, dioxin tends to accumulate on the particle surface because of its physical and chemical properties. Therefore, dioxin is mostly distributed in solid phase. While the particles in stack gas are collected by the air pollution control equipment, the dioxin concentration in solid phase decreases as well (0.13~0.40 ng I-TEQ/Nm3) and it meets the emission standard (1.0 ng I-TEQ/Nm3). In contrast, PCDD/F concentrations based on toxic equivalent in fly ashes ranged from 0.466 to 28.8 ng I-TEQ/g. That is significantly higher than the standard for the hazardous industrial waste regulated by Taiwan EPA. Hence, how to properly dispose of highly dioxin contaminated fly ash remains a great concern.
Altarawneh, M., Dlugogorski, B.Z., Kennedy, E.M. and Mackie, J.C., “Mechanisms for Formation, Chlorination, Dechlorination and Destruction of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDDFs)”, Progress in Energy and Combustion Science, 35, 245–274 (2009)
Ba, T., Zheng, M., Zhang, B., Liu, W., Xiao, K. and Zhang, L., “Estimation and Characterization of PCDD/Fs and Dioxin-like PCBs from Secondary Copper and Aluminum Metallurgies in China”, Chemosphere 75, 1173–1178 (2009)
Ba, T., Zheng, M., Zhang, B., Liu, W., Su, G., Liu, G. and Xiao, K., “Estimation and Congener-specific Characterization of Polychlorinated Naphthalene Emissions from Secondary Nonferrous Metallurgical Facilities in China”, Environmental Science & Technology, 44, 2441-2446 (2010)
Baker, J.I. and Hites, R.A., “Is Combustion the Major Source of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans to the Environment? A Mass Balance Investigation”, Environmental Science & Technology, 34, 2879-2886 (2000)
Bocio, A. and Domingo, J.L., “Daily Iintake of Polychlorinated Dibenzo-p-dioxins/Polychlorinated Dibenzofurans in Foodstuffs Consumed in Tarragona, Spain: a Review of Recent Studies (2001–2003) on Human PCDD/PCDF Exposure through the Diet”, Environmental Research, 97, 1-9 (2005)
Chen, C.M., “The Emission Inventory of PCDD/PCDF in Taiwan”, Chemosphere, 54, 1413-1420 (2004)
Dickson, L.C., Lenoir, D. and Hutzinger, O., “Quantitative Comparison of De Novo and Precursor Formation of Polychlorinated Dibenzo-p-dioxins under Simulated Municipal Solid Waste Incinerator Postcombustion Conditions”, Environmental Science & Technology, 26, 1822-1828 (1992)
Everaert, K., Baey-Milligan, M. S. and Altwicker, E. R., “Correlation of PCDD/F Emission with Operating Parameters of Municipal Solid Waste Incinerator”, Journal of Air and Waste Management, 51, 718-724 (2001)
Fujimori, T., Takaoka, M., and Takeda N., “Influence of Cu, Fe, Pb, and Zn Chlorides and Oxides on Formation of Chlorinated Aromatic Compounds in MSWI Fly Ash”, Environmental Science & Technology, 43, 8053–8059 (2009)
Kransler, K.M., McGarrigle, B.P., Swartz, D.D. and Olson, J.R, “Lung Development in the Holtzman Rat is Adversely Affected by Gestational Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin”, Toxicological Sciences, 107, 498-511 (2009)
Lee, J.E. and Jurng, J., “Catalytic Conversions of Polychlorinated Benzenes and Dioxins with Low-chlorine Using V2O5/TiO2”, Catalysis Letters, 120(3-4), 294-298 (2008)
Li, H.W., Wang, L.C., Chen, C.C., Yang, X.Y., Chang-Chien, G.P. and Wu, E.M.Y., “Influence of Memory Effect Caused by Aged Bag Filters on the Stack PCDD/F Emissions”, Journal of Hazardous Materials, 185, 1148-1155 (2011)
Lohmann, R. and Jones, K.C., “Dioxins and Furans in Air and Deposition: a Review of Levels, Behaviour and Processes”, The Science of the Total Environment, 219, 53-81 (1998)
Mackay, D., Shiu, W.Y. and Ma, K.C., “Illustrated Handbook of Physical-ChemicalHydrocarbons, Polychlorinated Dioxins and Dibenzofurans”, II, Lewis Publishers (1992)
Miller, K.P., Borgeest, C., Greenfeld, C., Tomic D. and Flaws, J.A., “In Utero Effects of Chemicals on Reproductive Tissues in Females”, Toxicology Applied Pharmacology, 198, 111–131 (2004)
Olie, K., Ruud, A. and Mirjam, S., “Metals as Catalysts during the Formation and Decomposition of Chlorinated Dioxins and Furans in Incineration Processes”, Journal of Air and Waste Management, 48, 101-105 (1998)
Panteleyev, A.A. and Bickers, D.R., “Dioxin-Induced Chloracne — Reconstructing the Cellular and Molecular Mechanisms of a Classic Environmental Disease”, Experimental Dermatology, 15, 705-730 (2006)
Shiu, W.Y., Doucette, W., Gobas, A.P.C., Andren, A. and Mackay, D., “Physical-Chemical Properties of Chlorinated Dibenzo-p-dioxins”, Environmental Science & Technology, 22, 651-658 (1988)
Takaoka, M., Fujimori, T., Shiono A., Yamamoto T., Takeda N., Oshita K., Uruga T., Sun Y. and Tanaka T., “Formation of Chlorinated Aromatics in Model Fly Ashes Using Various Copper Compounds”, Chemosphere, 80, 144–149 (2010)
Tuomisto, J., Pekkanen, J., Kiviranta, H., Tukiainen, E., Vartiainen, T., Viluksela, M. and Tuomisto J. T., “Dioxin Cancer Risk — Example of Hormesis?”, International Hormesis Society, 3, 332-341 (2005)
USEPA, Draft Dioxin Reassessment (2000)
USGS, Mineral Commodity Summaries – Copper (2011)
Wang, J.B., Hung, C.H., Hung, C.H., Chang-Chien, G.P., “Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Emissions from an Industrial Park Clustered with Metallurgical Industries”, Journal of Hazardous Materials, 161, 800-807 (2009)
WHO, “Project for the Re-evaluation of Human and Mammalian Toxic Equivalency Factors (TEFs) of Dioxins and Dioxin-like Compounds” (2006)
Yan, M., Li, X., Chen, T., Lu, S., Yan, J. and Cen, K, “Effect of Temperature and Oxygen on the Formation of Chlorobenzene as the Indicator of PCDD/Fs”, Journal of Environmental Sciences, 22, 1637-1642 (2010)
Yu, B.W., Jin, G.Z., Moon, Y.H., Kim, M.K., Kyoung, J.D. and Chang, Y.S., “Emission of PCDD/Fs and Dioxin-like PCBs from Metallurgy Industries in S. Korea”, Chmosphere, 62, 494-501 (2006)
Zhu, J., Hirai, Y., Yu, G., and Sakai, S.I., “Levels of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in China and Chemometric Analysis of Potential Emission Sources”, Chemosphere, 70, 703-711 (2008)
工業技術研究院,「中小型廢棄物焚化爐、煉鋼業電弧爐及非鐵金屬冶煉業戴奧辛排放減量改善計畫」 (2003)
中興工程顧問股份有限公司,「九十一、九十二、九十三年度建立台灣地區戴奧辛排放清冊及排放資料庫三年工作計畫」,行政院環保署 (2005)
國立中央大學,「99年度有害事業廢棄物戴奧辛及重金屬管制之調查與評估專案研究計畫」,行政院環保署 (2010)
中興工程顧問股份有限公司,「有害事業廢棄物戴奧辛及重金屬管制之調查與評估專案研究計畫」,行政院環保署 (2009)
中興工程顧問股份有限公司,「固定污染源戴奧辛及重金屬排放調查與健康風險評估計畫」,行政院環保署 (2010)
行政院環保署,「事業廢棄物採樣方法 (NIEA R118.02B)」 (2005)
行政院環保署,「排放管道中戴奧辛及呋喃採樣方法 (NIEA A807.74C)」 (2007)
行政院環保署,「排放管道中戴奧辛及呋喃檢測方法 (NIEA A808.73B)」 (2008)
行政院環保署,「戴奧辛及呋喃檢測方法—同位素標幟稀釋氣相層析/高解析質譜法 (NIEA M801.11B)」 (2005)
行政院環境保護署,事業廢棄物管制資訊網,http://waste.epa.gov.tw
沈曾圻,「金屬材料」,大中國圖書公司 (1978)
林正忠,「垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討」, 國立中央大學環境工程研究所碩士論文 (2000)
柳萬霞、王厚傳、李秀霞、黃志峰、陳明輝、章裕民,「非鐵金屬冶煉業戴奧辛防制之可行控制技術分析」,工業污染防制,92,132-161 (2004)
椙山正孝,「非鐵金屬材料」,復漢出版社 (1982)
黃健琨,「垃圾焚化爐空氣污染物排放特性之初步探討」,國立中央大學環境工程研究所碩士論文 (1999)
黃鴻期,「電弧爐煉鋼廠及中小型焚化爐戴奧辛物種分佈探討」,國立中央大學環境工程研究所碩士論文 (2004)
楊行宜,「都市垃圾焚化廠排放戴奧辛呋喃之特徵」,國立成功大學環境工程學系碩士論文 (2004)
經濟部工業局,「製程戴奧辛減廢與減量技術手冊」 (2005)
鼎環工程顧問股份有限公司,「重大固定污染源評鑑及查核工作計畫」,行政院環保署 (2010)
礦業中國,http://www.mn86.com/technique/1/396.html (2010)