跳到主要內容

簡易檢索 / 詳目顯示

研究生: 宋俊毅
Jun-Yi Song
論文名稱: 具備簡單垂直共振腔的紫外光發光二極體
The Ultraviolet Light Emitting Diode with a Simple Vertical Cavity
指導教授: 賴昆佑
Kun-Yu Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 45
中文關鍵詞: 二極體共振腔紫外光
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 共振腔發光二極體(Resonant Cavity Light emitting Diodes, RCLED)是一種介於面射型雷射(Vertical Cavity Surface Emitting Laser, VCSEL)與發光二極體(Light-Emitting Diode, LED)之間的特別元件。相較於LED,RCLED有更好的方向性、光譜純度和溫度可靠性,也有更高的光萃取效率和調制帶寬。

    為了形成共振腔,在 RCLED 的上、下介面,通常需要高反射率的分散式布拉格反射 (distributed Bragg reflector, DBR) 結構,才能在元件表面發出半高寬極窄(< 10 nm)的光訊號。目前與 RCLED 相關的文獻,多為可見光範圍的研究結果,紫外光 RCLED 由於磊晶、製成難度較高,相關文獻較少,電激發的紫外光 RCLED 就更少了。

    本研究利用簡單的磊晶、製程步驟,在藍寶石基板上成長氮化鋁鎵 (AlGaN) 量子井,並利用空氣分別與氮化鎵(GaN)、藍寶石形成的介面,作為元件的共振腔,最後在磊晶片表面得到波長 340 nm 的RCLED。雖然操作電壓高達70 V,且光譜也出現明顯的缺陷光,但此種新式的 RCLED 結構,可大幅簡化磊晶、製程步驟,有潛力提升深紫外光LED的發光效率。


    Resonant Cavity Light emitting Diodes (RCLED) can be regarded as the combination of Vertical Cavity Surface Emitting Laser (VCSEL) and Light-Emitting Diode (LED). It has the advantages of LED and VCSEL. Comparing with the typical LED, RCLED has higher power, efficiency and modulation bandwidth, as well as better directionality, spectral purity and temperature reliability. In order to form the resonant cavity, RCLED often requires highly reflective upper and bottom interfaces, like distributed Bragg reflector (DBR), to enable the surface emission peak with narrow full width at half maximum. Most of the relevant literatures focus on the research results of visible RCLEDs. The results on ultraviolet (UV) RCLEDs, particularly by electrical-pumping, are scarcely found because of the challenges in growth and fabrication.

    In this study, we attained an electrical-pumping RCLED spectrum with the peaks centering at 340 nm, without resorting to the DBR interfaces. Although the spectrum comes with a high bias of 70 V and noticeable impurity emission, this unique UV RCLED greatly simplifies the growth/fabrication processes, benefiting the development of UV emitters.

    摘要 i Abstract ii 致謝 iii 目 錄 iv 圖目錄 v 一、緒論 1 1-1 深紫外光簡介 1 1-2 三五族半導體雷射的原理及應用 1 1-2-1 DUV-LED 2 1-2-2 RC-LED與共振腔的工作原理 5 1-3 研究動機與論文架構 10 二、實驗儀器與方法 11 2-1 MOCVD磊晶 11 2-2 黃光微影製程 13 2-3 EL量測 18 三、討論與分析 20 3-1 不同結構對光譜的影響 20 3-2 不同金屬電極的IV特性曲線 24 3-3 不同金屬電極對EL強度的影響 27 四、結論與未來展望 32 4-1 結論 32 4-2 未來展望 33 參考文獻 34 圖目錄 ▲圖 1.1 紫外光的應用[5] 1 ▲圖 1.2 UV-LED的應用[1] 2 ▲圖 1.3 紫外光波段的外部量子效率[1] 2 ▲圖 1.4 面射型雷射二極體[25] 4 ▲圖 1.5 一般VCSEL的製作過程[22] 4 ▲圖 1.6 典型RC-LED架構圖[26] 5 ▲圖 1.7 建設性干涉與破壞性干涉[32] 6 ▲圖 1.8 光學共振腔[38] 7 ▲圖 1.9 對稱共振腔中穿透率與反射率的關係[38] 9 ▲圖 1.10 光模態與激發光光譜[37] 9 ▲圖 2.1 Aixtron200 RF/4 MOCVD系統 11 ▲圖 2.2 Aixtron200 RF/4 MOCVD水平腔體式系統的架構 12 ▲圖 2.3 基本的黃光微影製程 13 ▲圖 2.4 磊晶完後的兩吋片子 14 ▲圖 2.5 切割後的小片子 14 ▲圖 2.6 旋轉塗布機 14 ▲圖 2.7 曝光機 15 ▲圖 2.8 高真空電子束暨熱阻式蒸鍍機 16 ▲圖 2.9 相隔兩個電極的間距和尺寸 16 ▲圖 2.10 快速退火爐 17 ▲圖 2.11 退火後的成品 17 ▲圖 2.12 EL量測系統示意圖 18 ▲圖 2.13 EL量測1 19 ▲圖 2.14 EL量測2 19 ▲圖 3.1 編號5477的結構 20 ▲圖 3.2 編號5484的結構 21 ▲圖 3.3 編號5477的EL光譜圖 22 ▲圖 3.4 編號5484的EL光譜圖 22 ▲圖 3.5 功函數小的金屬和半導體接觸前後的情況[41] 24 ▲圖 3.6 功函數大的金屬和半導體接觸前後的情況[41] 24 ▲圖 3.7 Ni/Au退火後的結果[44] 25 ▲圖 3.8 Ni/Au和Ni/Al的IV特性曲線 26 ▲圖 3.9 Ni/Al中的Ni厚度15nm和25nm的IV特性曲線 27 ▲圖 3.10 電極鍍Au和Al的波長對EL強度的比較 28 ▲圖 3.11 Ni/Au的光譜隨電壓的變化 29 ▲圖 3.12 Ni/Al的光譜隨電壓的變化 29 ▲圖 3.13 各種金屬反射率對波長的關係[49] 30 ▲圖 3.14 Ni/Au在短波長的光譜 31 ▲圖 3.15 Ni/Al在短波長的光譜 31

    [1] Kneissl, M. & Rass, J. III-Nitride Ultraviolet Emitters–Technology and Applications. (Springer, 2016).
    [2] Kowalski, W. Ultraviolet Germicidal Irradiation Handbook. (Springer, 2009).
    [3] Crawford, M. H. et al. Final LDRD Report: Ultraviolet Water Purification Systems for Rural Environments and Mobile Applications. SAND2005-7245 (Sandia National Laboratories, 2005).
    [4] Würtele, M.-A. et al. Application of GaN-based deep ultraviolet light emitting diodes–UV LEDs for water disinfection. Water Res. 45, 1481–1489 (2011).
    [5] Y. Taniyasu, M. Kasu, and T. Makimoto. Aluminum Nitride Deep Ultraviolet Light-emitting Diodes. NTT Technical Review, No. 12, 54–58 (2006).
    [6] M. G. Ganchenkova and R. M. Nieminen. Nitrogen Vacancies as Major Point Defects in Gallium Nitride. Phys. Rev. Lett. 96 196402 (2006).
    [7] Choi R. Current status and future works of high-power deep UV LEDs. Proc. SPIE 10104 (2017).
    [8] LG Innotek unveils the world’s first ‘100 mW’ UV-C LED. Korea company (2017).
    [9] Nagai S, Yamada K, Hirano A, Ippommatsu M, Ito M, Morishima N, Aosaki K, Honda Y, Amano H and Akasaki I. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study. J. Appl. Phys. 55 082101 (2016).
    [10] Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I and Amano H. Internal quantum efficiency of whole-composition-range AlGaN multi quantum wells. Appl. Phys. Express 4 052101 (2011).
    [11] Reentil¨a O, Brunner F, Knauer A, Mogilatenko A, Neumann W, Protzmann H, Heuken M, Kneissl M, Weyers M and Tr¨ankle G. Effect of the AlN nucleation layer growth on AlN material quality. Journal of Crystal Growth 310(23) 4932-4934 (2008).
    [12] Kueller V et al. Modulated epitaxial lateral overgrowth of AlN for efficient UV LEDs. IEEE Photonics Technology Letters 24(18) 1603-1605 (2012).
    [13]Stephan Figge, Roland Kröger, Tim Böttcher, Peter L. Ryder, and Detlef Hommel. Magnesium segregation and the formation of pyramidal defects in p-GaN. Appl. Phys. Lett. 81 4748 (2002).
    [14] Xiao-Long Hu, Wen-Jie Liu, Guo-En Weng, Jiang-Yong Zhang, Xue-Qin Lv, Ming-Ming Liang, Ming Chen, Hui-Jun Huang, Lei-Ying Ying, and Bao-Ping Zhang. Fabrication and Characterization of High-Quality Factor GaN-Based Resonant-Cavity Blue Light-Emitting Diodes. IEEE PHOTONICS TECHNOLOGY LETTERS. 24(17) (2012).
    [15] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn. An optically pumped GaN–AlGaN vertical cavity surface emitting laser. Appl. Phys. Lett. 69 1-3 (1996).
    [16] Z. Zhang, M. Kushimoto, T. Sakai, N. Sugiyama, L. J. Schowalter, C. Sasaoka, and H. Amano. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl. Phys. Express 12 124003 (2019).
    [17] X. H. Li, T. T. Kao, M. M. Satter, Y. O. Wei, S. Wang, H. E. Xie, S. C. Shen, P. D. Yoder, A. M. Fischer, F. A. Ponce, T. Detchprohm, and R. D. Dupuis. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate. Appl. Phys. Lett. 106, 041115 (2015).
    [18] T. Takano, Y. Narita, A. Horiuchi, and H. Kawanishi. Room temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple quantum-well laser. Appl. Phys. Lett. 84 3567–3569 (2004).
    [19] Kalapala A R K, Liu D, Cho S J, Park J P, Zhao D Y et al. Optically pumped room temperature low threshold deep UV lasers grown on native AlN substrates. Opto-Electron Adv. 3 190025 (2020).
    [20] D. Li, K. Jiang, X. Sun, and C. Guo. AlGaN photonics: Recent advances in materials and ultraviolet devices. Advances in Optics and Photonics 10(1) 43–110 (2018).
    [21] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann. Optical constants of epitaxial AlGaN films and their temperature dependence. Journal of Applied Physics 82(10) 5090—5096 (1997).
    [22] Zhongming Zheng, Yang Mei, Hao Long, Jason Hoo, Shiping Guo, Qingxuan Li, Leiying Ying, Zhiwei Zheng, Baoping Zhang. AlGaN-Based Deep Ultraviolet Vertical-Cavity Surface-Emitting Laser. IEEE Electron Device Letters 3 375 – 378 (2021).
    [23] U. T. Schwarz, E. Sturm, and W. Wegscheider. Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers. Applied Physics Letters 83 4095 (2003).
    [24] G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga. Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method. Appl. Phys. Lett. 70 3209 (1997).
    [25] Hightech, 雷射二極體, 知識力期刊 (2020).
    [26] E. F. Schubert. Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik. Resonant cavity light-emitting diode. Appl. Phys. Lett. 60 921 (1992).
    [27] R. H. Saul, T. P. Lee, and C. A. Burrus. Semiconductors and Semimetals 22 Part C 193 (Academic, New York, 1985)
    [28] F. De Martini, G. Innocenty, G. R. Jacobovitz, and P. Mataloni. Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity. Phys. Rev. Lett. 59 2955 (1987)
    [29] H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen. Enhanced spontaneous emission from GaAs quantum wells in monolithic micro-cavities. Appl. Phys. Lett. 57 2814 (1990).
    [30] M. Suzuki, H. Yokoyama, S. D. Brorson, and E. P. Ippen. Spontaneous emission and laser oscillation properties of micro-cavities containing a dye solution. Appl. Phys. Lett. 58 2598 (1991).
    [31] T. J. Rogers, D. G. Deppe, and B. G. Streetman. Effect of an AlAs/GaAs mirror on the spontaneous emission of an InGaAs‐GaAs quantum well. Appl. Phys. Lett. 57 1858 (1990).
    [32] H. E. Li and K. Iga. Vertical-Cavity Surface –Emitting Laser Devices. (Springer, Berlin) (2003).
    [33] C. W. Wilmsen, H. Temkin, L. A. Coldren. Vertical-Cavity Surface-Emitting Lasers. Cambridge University Press (1999).
    [34] D. I. Babic and S. W. Corzine. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics. 28(2) 514-524 (1992).
    [35] H. Benisty, H. D. Neve, and C. Weisbuch. Impact of planar micro-cavity effects on light extraction-Part I: basic concepts and analytical trends. IEEE Journal of Quantum Electronics. 34(9) 1612-1631 (1998).
    [36] H. Benisty, H. D. Neve, and C. Weisbuch. Impact of planar micro-cavity effects on light extraction-Part II: selected exact simulations and role of photon recycling. IEEE Journal of Quantum Electronics. 34(9) 1632-1643 (1998).
    [37] D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, and H. Benisty. High-efficiency semiconductor resonant-cavity light-emitting diodes: A review. IEEE Journal of Selected Topics in Quantum Electronics. 8(2) 189 – 206 (2002).
    [38] Koichi Shimoda. Introduction to Laser Physics. (Springer, 2013).
    [39] Masahiro Akiba, Hideki Hirayama, Yuji Tomita, Yusuke Tsukada1, Noritoshi Maeda1, and Norihiko Kamata. Growth of flat p-GaN contact layer by pulse flow method for high light-extraction AlGaN deep-UV LEDs with Al-based electrode. physica status solidi (c). 9(3-4) 806-809 (2012).
    [40] 高煒盛,Kao Wei-Cheng, p 型BN的電極製程與分析Fabrication and characterization of metal contact on p-type Boron Nitride 國立中央大學光電工程學系碩士班 碩士論文 (2020).
    [41] 林洋森,覆晶式發光二極體 P 型氮化鎵高反射 鉑/銀/鉑/金歐姆電極之研究 國立交通大學 光電半導體與奈米科技產業研發碩士班 碩士論文 (2008).
    [42] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai. Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films. Journal of Applied Physics. 86 4491 (1999).
    [43] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami. Effects of NiO on electrical properties of Ni/Au-based ohmic contacts for p-type GaN. Appl. Phys. Lett. 75 4145 (1999).
    [44] D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, and T. E. Haynes. A study of the Au/Ni ohmic contact on p-GaN. Journal of Applied Physics. 88(7) 4196-4200 (2000).
    [45] L. C. Chen, F. R. Chen, J. J Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chenand K. K. Shih. Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN. Journal of Applied Physics. 86 3826 (1999).
    [46] Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A Vertikov, A.V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames. A vertical cavity light emitting InGaN quantum well heterostructure. Applied Physics Letters 74 3441 (1999).
    [47] Y.-K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, R. P. Schneider Jr., and T. Takeuchi. Resonant-cavity InGaN quantum-well blue light-emitting diodes. Applied Physics Letters 77 1744 (2000).
    [48] You Wu,ab Xiaojuan Sun, Zhiming Shi, Yuping Jia, Ke Jiang, Jianwei Ben, Cuihong Kai, Yong Wang, Wei Lu and Dabing Li. In situ fabrication of Al surface plasmon nanoparticles by metal–organic chemical vapor deposition for enhanced performance of AlGaN deep ultraviolet detectors. Nanoscale Adv. 2 1854-1858 (2020).
    [49]維基百科
    [50] P. Modak, M. D’Hondt, I. Moerman, P. Van Daele, P. Mijlemans, and P.Demeester. 5.2% Efficiency InAlGaP micro-cavity LEDs at 640 nm on Ge substrates. Electronics Letters. 37(6) 377 – 378 (2001).
    [51] Ralph Wirth, Christian Karnutsch, Siegmar Kugler, Simone Thaler, and Klaus P. Streubel. Red and orange resonant-cavity LEDs. Proc. SPIE 4278 (2001).
    [52] S. Orsila, T. Leinonen, P. Uusimaa, M. Saarinen, M. Guina, P. Sipila, V.Vilokkinen, P. Melanen, M. Dumitrescu, and M. Pessa. Resonant cavitylight-emitting diodes grown by solid source MBE. Journal of Crystal Growth. 227-228 346–351 (2001).
    [53] J. W. Gray, Y. S. Jalili, P. N. Stavrinou, M. Whitehead, G. Parry, A.Joel, R. Robjohn, R. Petrie, S. Hunjan, P. Gong, and G. Duggan. High efficiency, low voltage resonant-cavity light-emitting diodes operating around 650 nm. Electronics Letters. 36(20) 1730–1731 (2000).
    [54] Miao, P., Wu, L. and Peng, L. RCLED Nonlinearity Mitigation for Polymer Optical Fiber Communications. IEEE Xplore. 14862356 (2014).
    [55] Mesleh, R., Elgala, H. and Haas, H. LED Nonlinearity Mitigation Techniques in Optical Wireless OFDM Communication Systems. Journal of Optical Communications and Networking. 4(11) 865-875 (2012).
    [56] Dimitrov, S., Sinanovic, S. and Haas, H. Clipping Noise in OFDM-Based Optical Wireless Communication Systems. IEEE Transactions on Communications. 60(4) 1072-1081 (2012).
    [57] Mohamed Sufyan Islim, Ricardo X. Ferreira, Xiangyu He, Enyuan Xie, Stefan Videv, Shaun Viola, Scott Watson, Nikolaos Bamiedakis, Richard V. Penty, Ian H. White, Anthony E. Kelly, Erdan Gu, Harald Haas, and Martin D. Dawson. Towards 10 Gb/s Orthogonal Frequency Division Multiplexing-Based Visible Light Communication using a GaN Violet Micro-LED. Photonics Research. 5(2) A35-A43 (2017).

    QR CODE
    :::