跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡志陽
Chih-Yang Tsai
論文名稱:
I-Convergence of Korovkin Type Approximation Theorems for Unbounded Functions
指導教授: 蕭勝彥
Sen-Yen Shaw
高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 97
語文別: 英文
論文頁數: 36
中文關鍵詞: 理想收斂Korovkin 近似型定理
外文關鍵詞: Korovkin type approximation theorem, I-convergence
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將先介紹較統計收斂與A-統計收斂更為一般化的理想收斂,研究主軸為正線性算子,並以理想收斂來討論無界連續函數空間上的Korovkin近似定理。更進一步將所討論的空間擴展至高維度算子值或實數值函數空間。


    The purpose of this thesis is to study a Korovkin type approximation of unbounded functions by means of ideal convergence. The concept of ideal convergence is the generalizations of statistical convergence and A-statistical convergence. We will discuss the approximations of unbounded, operator-valued and real-valued functions with noncompact supports in R^m.

    1.Introduction............................................1 2.Some basic definitions and results......................3 3.I-convergence of unbounded functions....................9 4.I-convergence of unbounded m-parameter functions.......16 5.Examples...............................................24 References...............................................35

    [1] K. Demirci, I-limit superior and limit inferior, Math. Commun., 6 (2001), 165-172.
    [2] O. Duman, M.K. Khan, and C. Orhan, A-statistical convergence of approximating operators, Math. Inequalities and Appl., 6 (2003), 689-699.
    [3] O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161 (2004), 187-197.
    [4] O. Duman and C. Orhan, Rates of A-statistical convergence of positive linear operators, Applied Math. Letters, 18 (2005), 1339-1344.
    [5] E. Erkus and O. Duman, A Korovkin type approximaiton theorem in statistical sense, Studia Sci. Math. Hungar., 43 (2006), 285-294.
    [6] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
    [7] A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math., 95 (1981), 293-305.
    [8] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
    [9] P.P. Korovkin, Linear Operators and Theory of Approximation, Hindustan Publ. Comp., Delhi, 1960.
    [10] P. Kostyrko, M. Macaj, and T. Salat, I-convergence, Real Anal. Exchange, 26 (2000), 669-686.
    [11] J.E. Marsden and M.J. Hoffman, Elementary Classical Analysis, 2nd ed., W.H. Freeman and Comp., 1993.
    [12] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Tran. Amer. Math. Soc., 347 (1995), 1811-1819.
    [13] H.I. Miller and C. Orhan, Statistical (T) rates of convergence, Glasnik Matematicki, 39 (2004), 101-110.
    [14] A. Nabiev, S. Pehlivan, and M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math., 11 (2007), 569-576.
    [15] S.-Y. Shaw, Approximation of unbounded functions and applications to representations of semigroups, J. Approx. Theory, 28 (1980), 238-259.
    [16] S.-Y. Shaw and C.-C. Yeh, Rates for approximation of unbounded functions by positive linear operators, J. Approx. Theory, 57 (1989), 278-292.
    [17] H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.

    QR CODE
    :::