| 研究生: |
張瑜庭 Yu-Ting Chang |
|---|---|
| 論文名稱: |
建築用電格式探討與資料倉儲分析 Smart Meter Data Analytics in Buildings: Cross-Format Analysis and Data Warehousing Results |
| 指導教授: | 周建成 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 智慧電錶 、用電資料集合 、資料倉儲 、節能減碳 |
| 外文關鍵詞: | Smart Meter, Power Consumption Data Set, Data Warehouse, Energy Savings |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著能源議題受到關注,除了推廣永續能源之外也需要探討節約能源的方針。一般家庭生活用電屬於最普遍的電力消耗,藉由分析用電資料查找用電過高亦或是浪費電力之行為,透過住戶知曉其用電行為後自發性省電以求節約能源目的,但是,住戶無法從單純的總用電量得知數據涵蓋資訊,因此本研究提出一套資料倉儲系統以求後續對用電資料進行分析管理並提出適合之決策。
處理用電資料前,擁有格式清楚且完整的資料集合尤其重要,本研究將所收集已公開的用電資料集合提出欄位設計不當、量測項目不清楚及紀錄不完整等問題,若無統一格式將造成資料於後續分析上的困難,因此本研究將用電資料集合之屬性資訊相互比較並提出適合之格式,以作為用電資料的共同語言。
本研究使用REFIT英國公開用電資料集合提出一套資料倉儲系統,藉由維度屬性資訊與用電資料之關聯性設計各維度表結構,其中包含時間、環境、建築資訊、地址及電器共5個維度表。本研究提出此資料倉儲系統目的為讓使用者對用電資料進行彈性的維度分析,並讓使用者知悉用電數據之重要資訊,由於資料倉儲為結構化資料的特性,此系統可供使用者查詢用電資料的趨勢,透過趨勢情況得知住宅用電行為,再近一步規劃後續決策,甚至讓住戶以自發性規劃其節電行為,以達節約能源的效益。
With the importance of energy issues, how to make the occupants of a residential or commercial building more aware of their own electricity consumption and then change their behavior to save electricity has always been the top priority. Today, countries are gradually promoting the installation of smart meters. The literature also has a collection of publicly available power consumption data sets for selected countries. With reference to the national electricity data format, it is necessary to clarify and design the most suitable method for Taiwan, so as to meet the needs of various analysis in the future. Furthermore, this study uses the UK REFIT public data set, transforms the data format requirements for data warehousing analysis, uses Microsoft SQL Server’s data warehousing tools, designs the star schema as well as dimensions and fact tables, and finally presents data warehousing results in the form of trend analysis. In addition to understanding the people's electricity habits and designing energy-saving behaviors, the identified patterns can be extended and applied in the smart meter data sets from Taiwan, so as to plan dynamic energy-saving behaviors to achieve energy conservation.
中國電力企業聯合會, (2018). 國家電網公司服務區域智能電錶覆蓋率達99.57%. Retrieved Jan. 11, 2019, from https://bit.ly/2WlSRPZ.
沈玉如, (2013). 智慧電網中智慧型讀表系統的推動. 興大工程學刊, 24(2), 117-127。
林瑞珠、朱丹丹, (2018). 推動智慧電表布建之資訊安全與隱私保護規範. 臺灣能源期刊, 5(4), 315-330。
廖文華、傅孟臺、孫廷瑞, (2016). 105年家庭用電消費調查, 工業技術研究院綠能與環境研究所產業發展推動組, 新竹縣, 台灣。
Alahakoon, D., & Yu, X. (2015). Smart electricity meter data intelligence for future energy systems: A survey. IEEE Transactions on Industrial Informatics, 12(1), 425-436.
Australian Government. (2014). Electricity consumption benchmarks. Retrieved Jan. 20, 2018, from https://bit.ly/2JJE9fH.
Batra, N., Gulati, M., Singh, A., & Srivastava, M. B. (2013). It's Different: Insights into home energy consumption in India. The 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, ACM, Roma, Italy, Nov. 11-15, 2013.
Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T., & Santini, S. (2014). The ECO data set and the performance of non-intrusive load monitoring algorithms. The 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, ACM, Memphis, TN, USA, Nov. 5-6, 2014.
Electricity Authority. (2016). Smart meters: Enhancing competition and enabling new consumer technologies. Retrieved Mar. 25, 2018, from https://bit.ly/2EGQyNk.
European Commission. (2014). Smart grids and meters. Retrieved May. 5, 2018, from https://bit.ly/2bQLJV7.
Faruqui, A., & Sergici, S. (2010). Household response to dynamic pricing of electricity: a survey of 15 experiments. Journal of regulatory Economics, 38(2), 193-225.
Filippini, M., & Pachauri, S. (2004). Elasticities of electricity demand in urban Indian households. Energy policy, 32(3), 429-436.
Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2013). A survey on smart grid potential applications and communication requirements. IEEE Transactions on industrial informatics, 9(1), 28-42.
Li, Y., Wang, L., Ji, L., & Liao, C. (2013). A data warehouse architecture supporting energy management of intelligent electricity system. The 2nd International Conference on Computer Science and Electronics Engineering, Atlantis Press, Los Angeles, CA, USA, July 1-2, 2013.
Murray, D., Stankovic, L., & Stankovic, V. (2017). An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study. Scientific data, 4, 160122.
NorthEast Group LLC. (2012). Emerging markets to more than double smart
meter growth in 2013, $56bn market by 2022. Retrieved Sep. 26, 2018, from https://prn.to/2I2lNmU.
Pecan Street (2012). Real energy. real customers. in real time. Retrieved Dec. 15, 2017, from http://www.pecanstreet.org/energy/.
Thøgersen, J., & Grønhøj, A. (2010). Electricity saving in households—A social cognitive approach. Energy policy, 38(12), 7732-7743.
U.S. Energy Information Administration. (2017). How many smart meters are installed in the United States, and who has them? Retrieved Oct. 17, 2018, from https://bit.ly/2Wu5ckX.
Wikipedia. (2008). Star Schema in Wikipedia: Star schema used by example query. Retrieved Sep. 9, 2018, from https://bit.ly/2uqR4cx.
Zhang, Y. (2016). The Application of Data Warehouse and Data Mining Technology in Power System. The International Conference on Education, Management, Computer and Society, Atlantis Press, Shenyang, China, January 1-3, 2016.