跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許原彰
Yuan-Chang Hsu
論文名稱: 溫度對於Pseudomonas putida鄰苯二酚加氧酵素之活性與結構的效應
指導教授: 黃雪莉
Shir-Ly Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 88
語文別: 中文
論文頁數: 75
中文關鍵詞: 鄰苯二酚加氧酵素熱穩定性小角度中子散射
外文關鍵詞: Pseudomonas putida, catechol 2, 3-dioxygenase, SANS
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 在了解SH1菌株中不同的鄰苯二酚加氧酵素生化特性後,我們以C23Onap(SH1)和已知?的分解菌P. putida NCIB9816-4所純化出之C23Onap(NCIB9816-4)研究溫度對酵素活性的影響;同時根據小角度中子散射(small angle neutron scattering, SANS)實驗,在不同溫度下研究酵素在水溶液中的結構,如分子大小與四級結構等。從生化實驗顯示C23Onap(SH1)是由4個相同的次單元(subunit)所組成,最適催化溫度為50℃;在50℃時,C23Onap(SH1)活性半衰期不及1小時而C23Onap(NCIB9816-4)半衰期則為4小時,在相同溫度但無氧條件下,C23Onap(SH1)之活性半衰期增為3小時;此二酵素之活性分別在55℃與60℃急速下降(1小時後為15%和9%)。從SANS實驗所得結果顯示,在5~55℃時,二者分子大小皆約為60 Å,但C23Onap(SH1)在57℃、C23Onap(NCIB9816-4)在62℃時分子大小開始變大,當溫度升至80℃間時二者分子大小分別增為130 Å與120 Å,且即使回溫至5℃後酵素分子大小也不會回復,顯示酵素結構是不可逆性地被破壞;溫度對此二酵素的效應在催化活性與小角度中子散射實驗結果裡都顯示C23Onap(NCIB9816-4)比C23Onap(SH1)高出5℃的熱穩定性。
    此計畫未來研究方向將尋找影響酵素熱穩定性與結構中每個subunit相互連接處之胺基酸,並以蛋白質工程進行酵素之改良。



    The specific activities of C23Os induced by 3 isomers of cresol in crude cell extracts from P. putida SH1 was determined towards to catechol and and catabolic derivatives, 3-methylcatechol, 4- methylcatechol and 4-chrolocatechol. It showed the same substrate specificity, suggesting this strain converts o-, m-, and p-cresol to catechol probably by the same C23O.
    The thermal effect on C23O was then observed by the stability of activity as well as conformation change at various temperatures. The optimally catalytic temperature of C23Onap(SH1) was at 50℃ in 20 mM phosphate buffer, pH 7.5 but the half-life of C23Onap(SH1) at this temperature was 30 min under aerobic condition. The half-life of another C23O, C23Onap(NCIB9816-4) isolated from a known naphthalene-degrading bacterium, P. putida NCIB9816-4, was 4 hour under the same condition. It indicated that C23Onap(NCIB9816-4) was more stable than C23Onap(SH1). The structural conformation of the enzymes in solution was analyzed by using small-angle neutron scattering (SANS) technique. SANS measurements revealed distinct changes on the size of the C23Onap(SH1) between 57 and 80°C, where the size can not be restored even the temperature was then reduced. At 80°C, the size of the enzyme becomes more than twice of its native one. Accordingly, the enzyme starts to denature at 57°C and the structure was destroyed as temperature reaches 80°C. Another enzyme, C23Onap(NCIB9816-4), was also studied under the same experimental conditions. This enzyme shows slightly higher heat stability, about 5°C, in both catalytic activity and conformation.
    In the meantime, the factors influencing thermal stability, including Fe2+, acetone, ethanol, and starch, on C23O were further investigated by using C23O purified from p. putida mt-2.

    中文摘要……………………………………………………I 英文摘要……………………………………………………IV 目錄…………………………………………………………VI 圖目錄………………………………………………………VII 表目錄………………………………………………………VI 壹、緒論……………………………………………………1 一、芳香族化合物及微生物分解…………………………1 二、鄰苯二酚加氧酵素之特性……………………………2 三、鄰苯二酚加氧酵素之結構……………………………4 四、鄰苯二酚加氧酵素之熱穩定性………………………6 五、小角度中子散射於酵素結構之應用…………………7 六、研究背景與目的………………………………………9 貳、材料與方法……………………………………………13 一、微生物培養……………………………………………13 二、鄰苯二酚加氧酵素活性測定…………………………15 三、蛋白質測定……………………………………………16 四、鄰苯二酚加氧酵素之純化……………………………17 五、分子量測定……………………………………………20 六、鄰苯二酚加氧酵素熱穩定性測定……………………21 七、小角度中子散射………………………………………22 八、酵素穩定因子測試……………………………………22 九、N端胺基酸定序…………………….…………………23 十、化學藥品………………………………………………23 十一、儀器設備……………………………………………24 參、結果……………………………………………………26 一、C23Os N端胺基酸序列………………….……………26 二、C23O活性分析…………………………………………26 三、C23Os之純化………………………………….………28 四、溫度對C23Os活性之效應………………….…………31 五、溫度對C23Os結構之效應……….……………………33 六、C23O穩定因子測試……………………………………34 肆、討論……………………………………………………35 伍、參考文獻………………………………………………41 陸、圖………………………………………………………47 柒、表………………………………………………………68

    林春志. 1997. Pseudomonas putida SH1分解芳香族碳氫化合物之研究. 國立中央大學生命科學研究所碩士論文.
    楊璧如. 1997. 鄰苯二酚加氧酵素的基因選殖與分析. 國立中央大學生命科學研究所碩士論文.
    姜福慧. 1998. Pseudomonas putida SH1中鄰苯二酚加氧酵素的純化與特性分析. 國立中央大學生命科學研究所碩士論文.
    李祖霖. 1999. Pseudomonas putida SH1中鄰苯二酚加氧酵素的純化與特性分析(II). 國立中央大學生命科學研究所碩士論文.
    羅淑如. 1999. Pseudomonas putida SH1中誘發苯環化合物代謝之研究. 國立中央大學生命科學研究所碩士論文.
    Bergdoll, M., L. D. Eltis, A. D. Cameron, P. Dumas, and J. T. Bolin. 1998. All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly. Protein Sci. 7:1667-1670.
    Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
    Broderick, J. B. and O’Halloran, T. V. 1991. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistr. 30:7349-7358.
    Caldwell, D. R. 1995. Cabolic metabolism, p. 83-115. In microbial physiology and metabolism. D. R. (ed.), Caldwell, W. C. Brown Communications. Inc., U. S. A.
    Cerniglia, C. E. and M. A. Heitkamp. 1989. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. p. 41-68. In Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press, Boca Raton, FL.
    Dessen, P., S. Blanquent, G. Zaccai, and B. Jacrot. 1978. Antico-operative binding or initiator transfer RNA met to methionyl-transfer RNA synthetase for Escherichia coli: neutron scattering studies. J. Mol. Biol. 126:293-313.
    Eltis, L. D. and J. T. Bolin. 1996. Evolutionary relationships among extradiol dioxygenases. J. Bacteriol. 178:5930-5937.
    Eltis, L. D., B. Hofmann, H.-J. Hecht, H. Lunsdorf and K. N. Timmis. 1993. Purification and crystallization of 2,3-dihydroxyv]biphenyl 1,2-dioxygenase. J. Biol. Chem. 268:2727-2732.
    Fernandez-Lafuente, R., J. M. Guisan, S. Ali, and D. Cowan. 2000. Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability. Enzyme Microb. Technol. 26:568-573.
    Fuchs G., M. S. Mohamed, U. Altenschmidt, J. Koch, A. Lack, R.
    Gassner, G. T., D. P. Ballou, G. A. Landrum, and J. W. Whittaker. 1993. Magnetic circular dichroism studies on the mononuclear ferrous active site of phthalate dioxygenase from Pseudomas cepacia show a change of ligation state on substrate binding. Biochemistry. 32:4820-4825.
    Guinier, A. 1939. Ann. Phys. 12:161
    Han S., L. D. Eltis, K. N. Timmis, S. W. Muchmore, and J. T. Bolin. 1995. Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading Pseudomonad. Science 270:976-980.
    Harayama, S., and M. Kok. 1992.Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46:565-601.
    Hayaishi, O., and Z. Hashimoto. 1950. Pyrocatechase. A new enzyme catalyzing oxidative breakdown of pyrocatechin. J. Biochem. 37:317-374.
    Kataoka, M., H. Kamikubo, J. Yunoki, F. Tokunaga, T. Kanaya, Y. Izumi, and K. Shibata. 1999. Low energy dynamics of globular proteins studied by inelastic neutron scattering. J. Phys. Chem. Solids 60:1285-1289.
    Kikuchi, M., K. Ohnishi, and S. Harayama. 1999. Novel family shuffling methods for the in vitro evolution of enzymes. Gene. 236:159-167.
    Kita, A., S. Kita, I. Fujisawa, K. Inaka, T. Ishida, K. Horiike, M. Nozaki and K. Miki. 1999. An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure. 7:25-34.
    Laemmli, U. K. 1970. Cleavage of structure proteins during the aseembly of the head of bacteriophage T4. Nature 227:680
    Lauber, J. D. 1986. Disposal and destruction of waste PCBs. p. 84-149 In PCBs and the Environment. Ed. J. S. Waid. Vol. III. CRC Press, Boca Raton, FL..
    Lehmann, M. S., G. Zaccai. 1984. Neutron small- angle scattering studies of ribonuclease in mixed aqueous solutions and determination of the preferentially bound water. Biochem. 23:1939-1942.
    Lin, C.-C., F.-H. Chiang, and S.-L. Huang. 1997. Microbiological and biochemical studies of novel aromatic hydrocarbon-degrading Pseudomonas, p.239. Abstract of the twelfth Joint Annual Conference of Biomedical Sciences.
    Milo, R. E., F. M. Duffner and R. Muller. 1999. Catechol 2,3-dioxygenase from the thermophilic, phenol-degrading Bacillus thermoleovorans strain A2 has unexpected low thermal stability. Extremophiles. 3:185-190.
    Mutzel, A., U. M. Reinscheid, G. Antranikian and R. Muller. 1996. Isolation and characterization of a thermophilic bacillus strain, that degrades phenol and cresols as sole carbon source at 70℃. Appl. Microbiol. Biotechnol. 46:593-596.
    Nakai, C., K. Hori, H. Kagamiyama, T. Nakazawa, and M. Nozaki. 1983. Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J. Biol. Chem. 258:2916-2922.
    Nakai, C., T. Nakazawa, and M. Nozaki. 1988. Purification and properties of catechol 1,2-dioxygenase(pyrocatechase) from Pseudomonas putida mt-2 in comparison with that from Pseudomonas arvilla C-1. Arch. Biochem. Biophy. 267:701-713.
    Nakazawa, T. and T. Yokota. 1973. Benzoate metabolism in Pseudomonas putida mt-2:demonstration of two benzoate pathways. J. Bacteriol. 115:262-267.
    Niimura, N. 1999. Neutron structural biology. J. Phys. Chem. Solids 60:1256-1271.
    Nozaki, M., K. Ono, T. Nakazawa, S. Kotani, and O. Hayaishi. 1968. Metapyrocatechase J. Biol. Chem. 243:2682-2690.
    Nozaki, M., T. Kagamiyama, and O. Hayaishi. 1963. Metapyrocatechase I. Purification, crystallization and some properties. Biochemische Zeitschrift 338:582-590.
    Ohlendrof, D. H., J. D. Lipscomb, and P. C. Weber. 1988. Structure and assembly of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa. J. Mol. Biol. 336:403-405.
    Okuta, A., K. Ohnishi and S. Harayama. 1998. PCR isolation of Catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene. 212:221-228.
    Olson, P. E., B. Qi, L. J. Que, L. P. Wackett. 1992. Immunological demonstration of a unique 3,4-dihydroxyphenylacetate 2,3-dioxygenase in soil Arthrobacter strains. Appl. Environ. Microbiol. 58:2820-2826.
    Patel, R. N., C. T. Hou, A. Felix, and M. O. Lillard. 1976. Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus:purification and properties. J. Bacteriol. 127:536-544.
    Que, L. J. 1980. Non-heme iron dioxygenases. Struct. Bond. 40:39-72.
    Que, L. J., J. Widom, R. L. Crawford. 1981. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase: a manganese(II) dioxygenase from Bacillus brevis. J. Biol. Chem. 256:60-74.
    Sambro, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
    Senda T., K. Sugiyama, H. Narita, T. Yamamoto, K. Kimbara, M. Fukuda, M. Sato, K. Yano and Y. Mitsui. 1996. Three-dimensional structure of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J. Mol. Biol. 255:735-752.
    Shannon, M. J. R. and R. Unterman. 1993. Evaluating bioremediation: distinguishing fact from fiction. Ann. Rev. Microbiol. 47:715-738.
    Smith M. R. 1990. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191-206.
    Stegmann, R., E. Manakova, M. Roessle, H. Heumann, S.E. Nieba-Axmann, A. Plueckthun, T. Hermann, R. P. May and A. Wiedenmann. 1998. Structure change of the Escherichia coli GroEL-GroES chaperonins upon complex formation in solution: A neutron small angle scattering study. J. Struct. Biol. 121:30-40
    Suda, M., K. Hashimoto, H. Matsuoka, and T. Kamahora. 1951. J. Biochem(Tokoy). 38:289.
    Stanier, R. Y., G. Cohen-Bazire, and W. R. Sistrom. 1957. Kinetics studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. 49:25.
    Timmis, K. N., R. J. Steffan, and R. Unterman. 1994. Designing microorganisms for the treatment of toxic waters. Annu. Rev. Micrbiol. 48:525-557.
    Tsu-Lin Lee, Yuan-Chang Hsu and Shir-Ly Huang. 1999. Characterization of four catechol 2,3-dioxygenases from Pseudomonas putida SH1. Abstract of the 33rd Annual Meeting of the Chinese Society of Microbiology. p. 68.
    Van Dort, H. M. and D. L. Bedard. 1991. Reductive ortho and meta Dechlorination of a Polychlorinated Biphenyl Congener by Anaerobic Microorganisms. Appli. Envir. Microbiol. 57:1576-1578.
    Ven der Meer, J. R., R. I. L. Eggen, A. J. B. Zehnder, and W. M. de Vos. 1992. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodeds metabolism of chlorinated catechols:eviedence for specialization of catechol 1,2-dioxygenases for chlorinated substrate. J. Bacteriol. 173:2425-2434.
    Williams, P. A. and K. Murray. 1974. Metabolism of benzoate and the ethylbenzoate by Pseudomonas (arvilla)putida mt-2:evidence for the existence of a TOL plasmid. J. Bacteriol. 120:416
    Yen, K. M., and I. C. Gunsalus. 1985. Regulation of naphthalene catabolic genes 0f plasmid NAH7. J. Bacteriol. 162:1008-1013.
    Zaccai, G. 1999. Neutron scattering in biology in 1998 and beyond. J. Phys. Chem. Solids 60:1291-1295.
    Zylstra, G. J., and D. T. Gibson. 1989. Toluene degration by Pseudomonas putida F1. J. Biol. Chem. 264:14940-14946.

    QR CODE
    :::