跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許博凱
Po-Kai Hsu
論文名稱: 低溫蒸鍍二氧化鈦微環形共振腔製程研究
Fabrication of Low-Temperature Evaporation Titanium Dioxide Microring Resonators
指導教授: 王培勳
Pei-Hsun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 88
中文關鍵詞: 矽光子微環形共振腔二氧化鈦非線性光學蒸鍍
外文關鍵詞: Silicon Photonics, Micro-ring resonator, Titanium Dioxide, Nonlinear Optics, Evaporation
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代工業中,半導體發揮著關鍵作用,並已被廣泛研究。透過採用互補式金屬氧化物半導體(CMOS)相容的製造技術,可以在單一平台上實現高度集成、大規模且緊湊的光子器件。與傳統電子電路相比,矽光子技術具有更高的頻寬、更小的元件尺寸、更低的傳輸損耗以及更高的數據傳輸速率,使其能夠實現多種片上光學功能。最常使用的波長範圍為1310 nm與1550 nm,在這些波段光吸收較低,有助於減少波導傳輸損耗。然而,由於矽的能隙較小,光入射後會產生雙光子吸收(Two-Photon Absorption, TPA),導致額外的光損耗,進而影響非線性光學特性。為了解決這一問題,許多研究開始探索替代材料用於波導製作。本研究採用二氧化鈦(TiO₂)作為波導導光層材料,並設計不同厚度的低限制與高限制波導並以不同尺寸結構進行製作比較。
    在本研究中,我們展示了利用電子槍蒸鍍系統(E-gun Evaporation System, E-Gun)技術製造的高品質TiO₂波導諧振器。與傳統的濺鍍(Sputtering)和原子層沉積(Atomic Layer Deposition, ALD)技術相比,電子束蒸鍍具備更高的沉積速率,並且由於低能粒子的撞擊較少,可減少對基板的損傷,同時提升薄膜的純度和平滑度。此外,我們在不同的基板上製作並比較了元件特性,特別著重於玻璃基板作為另一種可行的替代方案,其具備的高硬度、平整度和優異的光學透明性,不僅有助於提升製程穩定性與薄膜品質,也能提供更佳的光學傳輸條件。。本研究使用國家實驗研究院台灣半導體研究中心(Taiwan Semiconductor Research Institute, TSRI)中的電子束微影(electron beam lithography, E-beam)技術進行圖案曝光,並透過精確的量測技術,成功製作出高品質的微環形共振腔。
    此外,我們亦針對環形共振腔進行了色散與非線性特性的量測,藉以探索其更高的應用潛力。最終,我們於波導共振器上整合微型加熱器以實現熱調制。然而,過往研究中尚未有在玻璃基板上進行熱調制的相關報導,主因為玻璃難以承受高溫製程。為解決此問題,我們採用 PDMS 作為包覆層,以輔助加熱器的製作與熱傳導,成功提升熱調制的可行性,並進一步拓展了玻璃基板光子元件在未來高靈敏度與可撓性應用中的發展潛力。


    In modern industry, semiconductors play a critical role and have been extensively studied. By adopting complementary metal-oxide-semiconductor (CMOS)-compatible fabrication techniques, highly integrated, large-scale, and compact photonic devices can be realized on a single platform. Compared with traditional electronic circuits, silicon photonics offers higher bandwidth, smaller device footprints, lower transmission losses, and faster data rates, enabling various on-chip optical functionalities. The most commonly used wavelength ranges are 1310 nm and 1550 nm, where optical absorption is relatively low, helping to reduce waveguide transmission loss. However, due to the small bandgap of silicon, incident light can induce two-photon absorption (TPA), leading to additional optical loss and thereby limiting its nonlinear optical performance. To address this issue, many studies have explored alternative materials for waveguide fabrication.
    In this study, titanium dioxide (TiO₂) is employed as the waveguide core material, and both low-confinement and high-confinement waveguide structures of different thicknesses and dimensions are designed and fabricated for comparison. We demonstrate high-quality TiO₂ waveguide resonators fabricated using an E-gun evaporation system (E-Gun). Compared with conventional techniques such as sputtering and atomic layer deposition (ALD), electron beam evaporation offers a higher deposition rate and causes less damage to the substrate due to the lower-energy particle bombardment, thereby improving film purity and surface smoothness.
    In addition, we fabricate and compare device performance on different substrates, with particular emphasis on glass as a viable alternative. With its high hardness, excellent surface flatness, and superior optical transparency, the glass substrate not only enhances fabrication stability and film quality but also provides better optical transmission characteristics. This research utilizes electron beam lithography (E-beam) at the Taiwan Semiconductor Research Institute (TSRI) for pattern exposure and successfully realizes high-quality microring resonators through precise measurement and fabrication techniques.
    Furthermore, we conduct dispersion and nonlinear property measurements on the microring resonators to explore their advanced application potential. Finally, we integrate micro-heaters onto the waveguide resonators for thermal tuning. However, to date, thermal modulation on glass substrates has rarely been reported, primarily because glass cannot withstand high-temperature processes. To overcome this limitation, we use PDMS as a cladding layer to assist in heater fabrication and thermal conduction. This method significantly improves the feasibility of thermal tuning and further extends the potential applications of glass-based photonic devices, particularly in high-sensitivity and flexible systems

    國立中央大學圖書館學位論文授權書 I 國立中央大學碩士班研究生論文指導教授推薦書 II 國立中央大學碩士班研究生論文口試委員審定書 III 誌謝 IV 摘要 V ABSTRACT VI 目錄 VII 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1-1 矽光子以及微環形共振腔介紹 1 1-2 波導材料比較 4 1-2-1 材料沉積 5 1-3 研究動機 6 1-4 論文架構 7 第二章 微環形共振腔之模擬 8 2-1 波導結構之特性模擬 8 2-2 波導結構之特性比較 14 第三章 微環形共振腔之製程 16 3-1 玻璃基板介紹 16 3-2 微環形共振腔之製程流程 16 3-3 薄膜品質之量測 21 3-4 製程優化 25 3-4-1 曝光製程優化 25 3-4-2 蝕刻製程優化 26 3-4-3 去光阻製程優化 28 第四章 微環形共振腔之量測結果 29 4-1 量測架構 29 4-2 低限制波導之微環形共振腔之品質因子量測 30 4-3 高限制波導之微環形共振腔之品質因子量測 36 第五章 微環形共振腔之色散、非線性、熱調製特性量測 48 5-1 微環形共振腔之色散量測 48 5-1-1 色散介紹及模擬 48 5-1-2 量測架構 52 5-1-3 量測結果 52 5-2 微環形共振腔之非線性量測 54 5-2-1 非線性介紹 55 5-2-2 量測架構 55 5-2-3 量測結果 56 5-3 微環形共振腔之熱調製量測 57 5-3-1 熱調製介紹 57 5-3-2 微加熱器之製程流程 61 5-3-3 量測架構 65 5-3-4 量測結果 67 第六章 結論與未來展望 70 參考文獻 72

    [1] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, L. W. Luo, C. Li, X. Luo, and G.-Q. Lo, "Review of Silicon Photonics Technology and Platform Development," J. Lightwave Technol. 39, 4374-4389 (2021).
    [2] A. E.-J. Lim, G.-Q. Lo, F. Y. Goh, X. Tu, N. Duan, R. P. Tern, and T. Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2013).
    [3] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [4] C. Kopp, S. Bernabé, B. B. Bakir, P. Lyan, J. Fedeli, and J.-M. Fédéli, “Silicon photonic circuits: On-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2010).
    [5] N. L. Kazanskiy, M. Khodzitsky, and A. Burdin, “State-of-the-art optical devices for biomedical sensing applications—A review,” Electron. 10, 973 (2021).
    [6] Pavesi, Lorenzo, and Gérard Guillot. "Optical interconnects." Springer series in optical sciences 119 (2006).
    [7] W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic transmission systems via silicon photonics,” Nanophotonics 9, 4629–4663 (2020).
    [8] P. Steglich, D. G. Rabus, C. Sada, M. Paul, M. G. Weller, C. Mai, and A. Mai, “Silicon photonic micro-ring resonators for chemical and biological sensing: A tutorial,” IEEE Sens. J., 22(11), 10089–10105 (2021).
    [9]https://etd.lib.nycu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id=%22GC110226039%22.&searchmode=basic
    [10] Xiao, S., Khan, M. H., Shen, H., & Qi, M. (2007). Modeling and measurement of losses in silicon-on-insulator resonators and bends. Optics Express, 15(17), 10553-10561.
    [11] X. Ji, S. Roberts, M. Corato-Zanarella, and M. Lipson, “Methods to achieve ultra-high quality factor silicon nitride resonators,” APL Photonics, 6(7) (2021).
    [12] I. Hegeman, H. Kelderman, A. Leinse, and E. J. Klein, “Development of low-loss TiO2 waveguides,” Opt. Express 28, 5982–5990 (2020).
    [13] M. Fu, J. Zheng, X. Li, and G. Lo, “High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics,” Opt. Express 28, 39084–39092 (2020).
    [14] Qiu, Feng, et al. "TiO2 ring-resonator-based EO polymer modulator." Optics express 22.12 (2014): 14101-14107.
    [15] Jellison, G. E., Cureton, W. F., & Arteaga, O. (2024). Optical functions of uniaxial rutile and anatase (TiO2) revisited. Surface Science Spectra, 31(2).
    [16] Ghazal, Humaira, and Nadeem Sohail. "Sputtering Deposition." Thin Films-Deposition Methods and Applications. IntechOpen, 2022.
    [17] X. Guan, J. Zheng, M. Yu, C. Qiu, and G. Lo, “Compact titanium dioxide waveguides with high nonlinearity at telecommunication wavelengths,” Opt. Express 26, 1055–1063 (2018).
    [18] Oviroh, Peter Ozaveshe, et al. "New development of atomic layer deposition: processes, methods and applications." Science and technology of advanced materials 20.1 (2019): 465-496.
    [19] T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49(22), 4321–4325 (2010).
    [20] S. I. Shah, C. He, R. R. Lucchese, and M. T. McClure, “Evaporation: Processes, bulk microstructures, and mechanical properties,” Handb. Depos. Technol. Films Coat. 135–252 (2010).
    [21] Skopin, E. V., et al. "In situ ellipsometry monitoring of TiO2 atomic layer deposition from Tetrakis (dimethylamido) titanium (IV) and H2O precursors on Si and In0. 53Ga0. 47As substrates." Thin Solid Films 723 (2021): 138591.
    [22] C. C. Evans, C. Liu, and J. Suntivich, “Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process,” Opt. Express 23, 11160–11169 (2015).
    [23] Delcourt, E., Jebali, N., Bodiou, L., Baillieul, M., Baudet, E., Lemaitre, J., Nazabal, V., Dumeige, Y., and Charrier, J. “Self-phase modulation and four-wave mixing in a chalcogenide ridge waveguide,” Optical Materials Express 10, 1440–1450 (2020).
    [24] D. M. Moffatt, “Glass substrates for flat panel displays,” MRS Bull. 21, 31–34 (1996).
    [25] L. Brusberg, A. Reinhold, S. Barg, A. Schulzgen, and P. G. Kik, “Glass substrate with integrated waveguides for surface mount photonic packaging,” J. Lightwave Technol. 39, 912–919 (2020).
    [26] H. Serrar, S. Aoud, N. Bouarissa, and S. Cherkaoui, “Argon flow rate effects on the optical waveguide properties of DC sputtered TiO2 thin films,” Opt. Mater. 135, 113259 (2023).
    [27] Khodadad, I., N. Nelson-Fitzpatrick, K. Burcham, A. Hajian, and S. S. Saini. "Electron beam lithography using fixed beam moving stage." Journal of Vacuum Science & Technology B 35.5 (2017).
    [28] A. Balčytis, G. Seniutinas, D. Urbonas, M. Gabalis, K. Vaškevičius, R. Petruškevičius, G. Molis, G. Valušis, and S. Juodkazis. "High precision fabrication of antennas and sensors." Ninth International Symposium on Precision Engineering Measurement and Instrumentation 9446 (2015), SPIE.
    [29] Wikipedia contributors. Surface roughness. Wikipedia, The Free Encyclopedia. May 25, 2025,18:32UTC.Available at: https://en.wikipedia.org/w/index.php?title=Surface_roughness&oldid=1292199984. Accessed June 4, 2025.
    [30] Hsu, P.-K.; Wang, Z.-W.; Chi, M.-F.; Kuo, C.-C.; Wang, P.-H. “Development of high-quality TiO₂ photonics with E-gun evaporation,” (paper under review).
    [31] https://www.thunder-link.com/blog/what-are-basic-extended-and-super-c-band/
    [32] https://www.fiberoptics4sale.com/blogs/wave-optics/phase-velocity-groupvelocity-and-dispersion.(accessed.
    [33] https://www.fiberoptics4sale.com/blogs/wave-optics/phase-velocity-groupvelocity-and-dispersion.
    [34] Fujii, Shun, and Takasumi Tanabe. "Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation." Nanophotonics 9.5 (2020): 1087-1104.
    [35] Xue, Xiaoxiao, Minghao Qi, and Andrew M. Weiner. "Normal-dispersion microresonator Kerr frequency combs." Nanophotonics 5.2 (2016): 244-262.
    [36] Zheng, Yi, et al. "4H-SiC microring resonators for nonlinear integrated photonics." Optics letters 44.23 (2019): 5784-5787.
    [37] Pu, M., Ottaviano, L., Semenova, E., & Yvind, K. (2016). Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3(8), 823-826.
    [38] https://www.rp-photonics.com/tutorial_fiber_amplifiers4.html?utm_source=chatgpt.com
    [39] Chung, S., Nakai, M., and Hashemi, H., “Low-power thermo-optic silicon modulator for large-scale photonic integrated systems,” Opt. Express, 27(9), 13430–13459 (2019).
    [40]https://iconnect007.com/article/134808/beyond-design-the-eye-diagram/134811/design
    [41] Yu, H.; Qiu, F. Compact Thermo-Optic Modulator Based on a Titanium Dioxide Micro-Ring Resonator. Opt. Lett. 2022, 47: 2093–2096.
    [42] Yu, S., Sun, Y., Ni, Y., Zhang, X., & Zhou, H. (2016). Controlled formation of surface patterns in metal films deposited on elasticity-gradient PDMS substrates. ACS applied materials & interfaces, 8(8), 5706-5714.
    [43] Fu, M.; Zheng, J.; Li, X.; Yu, M.; Lo, G. Ultra-Compact Titanium Dioxide Micro-Ring Resonators with Sub-10-μm Radius for On-Chip Photonics. Photon. Res. 2021, 9: 1416–1422.
    [44] Chen, Z.; Wu, J.; Zhang, Y.; Xu, J.; Xie, H. Efficient and Compact Sol-Gel TiO₂ Thermo-Optic Microring Resonator Modulator. Opt. Mater. Express 2022, 12: 4061–4071.
    [45] Alasaarela, T.; Saastamoinen, T.; Hiltunen, J.; Säynätjoki, A.; Tervonen, A.; Stenberg, P.; Kuittinen, M.; Honkanen, S. Atomic Layer Deposited Titanium Dioxide and Its Application in Resonant Waveguide Grating. Appl. Opt. 2010, 49(22): 4321–4325.

    QR CODE
    :::