| 研究生: |
王阿成 A-Cheng Wang |
|---|---|
| 論文名稱: |
高精度微細孔槽的微放電複合技術研發及其加工特性研究 Study of high precision compound technology of micro-holes and micro-slits and machining characteristic research |
| 指導教授: |
顏炳華
Biing-Hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 184 |
| 中文關鍵詞: | 微細放電加工 、微超音波加工 、超音波研磨 、磁力研磨 、批次放電加工 |
| 外文關鍵詞: | Micro EDM, Micro USM, Ultrasonic Lapping, Magnetic Polishing, Batch Mode EDM |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高精度的微細孔洞與微細槽,一直是微機電系統(MEMS)所追求的目標之一,而如何使用經濟的方法,來製造高精度的微細孔洞,則是本實驗所要研究的重點。整個實驗乃是利用複合加工或批次製造(Batch mode production)的方式,在金屬或玻璃上加工高精度的微細孔或微細槽,並且結合塑性成形加工,提高成品的製造效率。
在實驗的進行過程中,我們先用自行設計的工具電極研磨機構,修整出適當形狀與尺寸的工具電極,然後使用此一電極,以放電的方式,在金屬材料上鑽削一個微孔或凹洞,再使用超音波振動研磨或磁力研磨等的加工方法,對微細孔洞進行研磨拋光加工。在玻璃上的微孔加工,則是將修整完的工具電極,當成加工工具,然後結合超音波振動,在玻璃上鑽削微孔。另外在微細槽模具的加工中,則是利用組合式電極,在碳化鎢的薄板上,實施複數微細槽的放電加工;而加工後的微細槽模具,即可以結合壓製與刮製的加工方式,製造出微細散熱片。
在放電微孔的精度改善方面,結合微能量放電與超音波振動研磨,加工直徑100?m的微孔或邊長100?m的正方形微孔,若能在適當的磨料濃度、振幅、轉速與較慢的進給下進行研磨加工,則可以有效改善放電微孔的精度。研磨加工時,平直狀工具會有較佳的入出口孔徑差改善率,在適當的加工參數下,其改善率可達60%以上;而階級狀工具對表面粗糙度的改善效果,則比平直狀工具來得好。使用超音波加工在厚度500?m的玻璃上,鑽削直徑150?m的微孔時,若配合適當的磨料濃度、超音波振幅、轉速與較小的磨料濃度及進給率,可以加工出入出口孔徑差只有2?m的微細孔。結合微能量放電與微研磨的加工方式,可在直徑280?m的錐狀圓桿上,加工出直徑150?m的半球形凹孔,且利用磁力研磨,可以使放電邊緣變得光滑,且沒有毛邊附著,是一種製造高精度凹型微孔的有效方法。使用組合式銅箔電極,可使微細放電加工達到批次製造的目的,而所加工出來的超硬合金微細槽,藉著變形加工法,可加工出微細散熱片。而此種微細槽的放電加工,必須配合噴流加工方式,才可以得到較佳微細槽形狀。另外使用純水當放電加工液時,由於氧氣的助燃與電解作用,加快放電效應的進行,因此微細槽模具的加工速度可以比煤油快5倍,但因為電極磨耗較快,微細槽的形狀較不易控制。
High precision micro-holes and micro slits are an important target that can be made in the micro-electro-mechanical systems (MEMS). Therefore, the main purpose of this thesis is to develop an economical and effective method to produce high accuracy micro-holes and micro slits. A compound or batch mode method was introduced to our researches. Furthermore, the high precision micro-holes were successfully fabricated in the metal or glass by the compound method, and the batch mode method was an efficient method to manufacture a micro slit die. A micro heat sink can be made using micro slit die in the plastic deformation manner.
In these experiments, an electrode was pruned to appropriate micro size by an electrical discharge grinding mechanism, first. Then a micro-hole or a semi-sphere concave hole in a metal plate was drilled using this electrode in micro EDM (MEDM). Finally, a micro ultrasonic grinding (MUG) or magnetic polishing was applying to burnish these micro-holes. Furthermore, the electrode was also utilized as a cutting tool when the micro-hole was fabricated by ultrasonic machining equipment in a small glass plate. In addition, an assembly electrode was used to make a micro slit die via MEDM in a tungsten carbide plate. Then combining with the pressing or scraping method, micro heat sinks could be produced applying the micro slit die.
Combining with MEDM and MUG to fabricate the micro-hole with diameter 100 ?m or square lateral length 100 ?m, a high precision micro-hole would be obtained at appropriate abrasive concentration, ultrasonic amplitude, rotating speed and slow feed rate. The straight grinding tool had better precision improved rate of micro-hole between entrance and exit (PIREE) than the step grinding tool in the MUG process. PIREE would reach 60% at suitable ultrasonic parameters. However, the step grinding tool would get the good surface roughness. The micro-hole with thickness 500??m and diameter 150 ?m in the Pyrex glass was drilled by micro ultrasonic machining method (MUSM). The diameter difference between entrance and exit would reach 2 ?m if appropriate abrasive concentration, ultrasonic amplitude, rotating speed and slow feed rate were used. The semi-sphere micro-hole in taper thin rod with diameter 150 ?m could be manufactured, combining with MEDM and micro grinding process. The burr attached in the micro-hole edge could be removed and the thin rod outside surface would be smoothed by magnetic polishing manner. In addition, the batch mode production of micro slits die would be carried out by assembly copper foils in MEDM. The micro heat sink would be fabricated using micro slits die at plastic deformation machining. However, manufacturing of micro slits die in MEDM needed to cooperate with the dielectric flushing way to find the good micro fins shape. During the oxygen combustion-supporting and electrolytic effect, the MEDM efficiency would increased fast when the distill water was utilized as dielectric. The micro slit die fabricating speed in distill water would fast 5 time of the kerosene. The micro fin shape was not control easily in MEDM because of the fast electrode abrasion.
1. 郭佳儱, 微放電加工技術於MEMS之應用, 機械月刊第二十五卷第十一期 (1999) 304-313.
2. K.D. Wise, Integrated Micro-electro-mechanical Systems - A Perspective on MEMS in the 90s, Proceedings of Micro Electro Mechanical Systems ’91 IEEE (1991) 33-38.
3. William B. Scott, Micro-Machines Hold Promise for Aerospace, Aviation Week & Space Technology, March 1 (1993) 36-39.
4. Working Group of Prime Minister’s Science and Engineering Council in Australia, Micro Engineering and Micro Machine – A New Threshold for Australian Industry, (1992) 16-17.
5. N. Nakajima, Challenge to New Artifacts : Micromachines, Proceeding of Workshop on Micromachine Technologies and Systems, Tokyo, (Oct. 1993) 8-14.
6. 翁政義,奈米工程暨微系統技術的展望, 奈米工程暨微系統技術研討會及展覽國科會微機電系統成果發表會, Sept. 21, 2002.
7. 機械技術雜誌編輯部, 二十一世紀的顯學:微機電系統--微放電精密加工, 機械技術雜誌第一八九期, (Nov. 2000) 220-228.
8. 卓漢明, 鈦合金(Ti-6Al-4V)之微細放電加工特性研究, 中央大學機械工程研究所博士論文, 1999.
9. W. Ehrfeld and H. Lehr, Deep X-Ray Lithography for the production of three-dimensional microstructures from metals, polymers and ceramics, Radiat. Phys. Chem. 45 (3) (1995) 349-365.
10. R.K Kupka, F. Bouamrance, C. Cremers, S. Megtert, Mircofabrication: LIGA-X and applications, Applied Surface Science 164 (2000) 97-110.
11. Dario, R. Vallegg, M.C. Carrozza, M.C. Montesti, and M. Cocco, Microactuators for Microrobots: A Critical Survey, J. Micromech. Microeng., 2 (1992) 141-157.
12. M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming, Annals of the CIRP, 50 (2) (2001) 419-425.
13. S.S. Choi, M.Y. Jung, D.W. Kim, M.A. Yakshin, J.Y. Park, Y. Kuk, Fabrication and microelectron gun arrays using laser micromachining, Microelectronic Engineering 41-42 (1998) 167-170.
14. C.T. Yang, S.S. Ho, B.H. Yan, Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM), Key Engineering Material 196 (2001) 149-166.
15. T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, “Wire Electro-Discharge Grinding for Micro-Machining “, Annals of the CIRP, 34 (1) (1985) 431-434.
16. Xi-Qing Sun, T. Masuzawa and M. Fjino, Micro ultrasonic machining and its applications in MEMS, Sensors and actuators A 57 (1996) 159-164.
17. K. Egashira, T. Masuzawa, Microultrasonic Machining by the Application of Workpiece Vibration, Annals of the CIRP 48 (1) (1999) 131-134.
18. T. Masuzwaw, M. Yamamoto and M. Fujino, “A Micropunching System Using Wire-EDM”, Proc. of Int’l Symposium for Electromachining (ISEM-9) (1989) 86-89.
19. K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining Using Water as a working Fluid-I: Micro-hole Drilling, Precision Engineering, 8 (3) (1986) 156-162.
20. T. Masuzawa, J. Tsukamoto and M. Fujino, Drilling of Deep Microholes by EDM, Annals of the CIRP, 38 (1) (1989) 195-198.
21. K. Kagaya, Y. Oishi, K. Yada, Micro-electrodischarge machining Using Water as a working Fluid-2: Narrow Slit Fabrication, Precision Engineering, 12 (4) (1990) 213-217.
22. T. Masaki, K. Kawata and T. Masuzawa, Micro Electo-Discharge Machining and Its Application, Proc. of MEMS ‘90 IEEE (1990) 21-26.
23. C.L. Kuo, T. Masuzawa, M. Fujino, A micro-pipe fabrication process, Proc. Of MEMS ’91 IEEE (1991) 80-85.
24. C.L. Kuo, T. Masuzawa, M. Fujino, High Precision Micronozzle Fabrication Process, Proc. Of MEMS ’92 IEEE (1992) 116-121.
25. T. Masuzawa, C.L. Kuo, M. Fujino, A combined electrical machining process for micronozzle fabrication, Annals of the CIRP, 43 (1) (1994) 189-192.
26. H.H. Langen, T. Masuzawa, M. Fujino, Modular method for microparts machining and assembly with self-alignment, Annals of the CIRP 44 (1995) 173-176.
27. D.M. Allen, A. Lecheheb, Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters, Journal of Material Processing Technology, 58 (1996) 53-66.
28. D. Reynaerts, P.H. Heeren, H. V. Brussel, Microstructuring of silicon by electro-discharge machining (EDM) – part I: theory, Sensors and Actuators A, 60 (1997) 212-218.
29. P.H. Heeren, D. Reynaerts, H.V. Brussel, Three-dimensional silicon micromechanical parts manufactured by electro-discharge machining, Proceeding of MEMS ’97 IEEE (1997) 247-252.
30. Z.Y. Yu, T. Masuzawa, M. Fujino, Micro-EDM for three dimensional cavities – Development of uniform wear method -, Annals of the CIRP 47 (1) 1998 169-172.
31. B.H. Yan, F.Y. Huang, H.M. Chow, J.Y. Tasi, Micro-hole machining of carbide by electrical discharge machining, Journal of Material Processing Technology 87 (1999) 139-145.
32. K. Takahata, N. Shibaike, H. Guckel, A novel micro electro-discharge machining method using electrodes fabricated by the LIGA process, Proceeding of MEMS ’99 IEEE (1999) 238-243.
33. 游聖恩,電化學拋光改善不銹鋼微細放電槽壁之研究,中央大學機械工程研究所碩士論文, 2000.
34. N. Mohri, H. Takezawa, K. Furutani, Y. Ito, T. Sata, A new process of additive and removal Machining by EDM with a thin electrode, Annals of the CIRP 49 (1) (2000) 123-126.
35. K.P. Rajurkar, Z.Y. Yu, 3D micro-EDM using CAD/CAM, Annals of the CIRP 49 (1) (2000) 127-130.
36. M.G. Her, F.T. Weng, Micro-hole machining of copper using the electro-discharge machining process with a tungsten carbide electrode compared with a copper electrode, International Journal of Advanced Manufacturing Technology 17 (2001) 715-719.
37. S.H. Yeo and G.G. Yap, A feasibility study on the micro electro-discharge machining process for photomask fabrication, International Journal of Advanced Manufacturing Technology 18 (2001) 7-11.
38. K. Takahata, Y.B. Gianchandani, Batch mode micro-EDM for high-density and high-throughput micromachining, Proceeding of MEMS ’01 IEEE (2001) 72-75.
39. K. Takahata, Y.B. Gianchandani, Batch mode Micro Electro Discharge machining, Journal of micro electro mechanical systems 11 (2) (2002) 102-110.
40. Y. Li, M. Guo, Z. Zhou, M. Hu, Micro electro discharge machine with an inchworm type of micro feed mechanism, Precision Engineering 26 (2002) 7-14.
41. Z.Y. Yu, K.P. Rajurkar, H. Shen, High aspect ratio and complex shaped blind micro holes by micro EDM, Annals of the CIRP 51 (1) (2002) 359-362.
42. K. Egashira, K. Mizutani, Micro-drilling of monocrystalline silicon using a cutting tool, Precision Engineering 26 (2002) 263-268.
43. F.T. Weng, M.H. Her, Study of the batch production of micro parts using the EDM process, International Journal of Advanced Manufacturing Technology 19 (2002) 266-270.
44. T. Mori, K. Hirota, S. Kurimoto, Y. Nakano, Die making of ultra-fine piercing by electric discharge machining, International symposium on micromechatronics and human science (2002) 61-66.
45. 黃玉龍、郭佳儱, 微放電加工製作微圓盤刀具進行銑削和研削微溝槽之研究, 第十九屆機械工程研討會,第四冊製造與材料(下) (2002) 747-754.
46. A.R. Jones, J.B. Hull, Ultrasonic flow polishing, Ultrasonic 36 (1998) 97-101.
47. B.H. Yan, C.C. Wang, H.M. Chow, Y.C. Lin, Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3 / 6061Al composite, International Journal of Machine Tools and Manufacture 40 (10) (2000) 1403-1422.
48. G.W. Chang, B.H. Yan, R.T. Hsu, Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives, International Journal of Machine Tools and Manufacture 42 (2002) 575-583.
49. H. Ohmori, T. Nakagawa, Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels, Annals of the CIRP 44 (1) (1995) 287-290.
50. K. Takahata, S. Aoki, T. Sato, Fine surface finishing method for 3-dimensional micro structures, Proceeding of MEMS ’96 IEEE (1996) 73-78.
51. H. Ramasawmy, L. Blunt, 3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces, International Journal of Machine Tools and Manufacture 42 (2002) 567-574.
52. N. Saito, N. Mohri, Improvement of machined surface roughness in large area EDM, Journal of Japan Society of Precision Engineering 57 (6) (1991) 954-958.
53. B.H. Yan, S.L. Chen, Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with aluminum powder, Journal of Japan Institute Metals, 58 (9) (1994) 1067-1072.
54. N. Mohri, N. Saito, T. Takawashi, K. Kobayashi, Mirror-Like finishing by EDM, International symposium on machine tool design and symposium (1987) 329-336.
55. N. Mohri, N. Saito, H. Ootake, T. Takawashi, K. Kobayashi, Finishing on the large area of work surface by EDM, Journal of Japan Society of Precision Engineering 53 (1) (1987) 124-130.
56. Chunhe Zhang, Hitoshi Ohmori, Wei Li, Small-hole machining of ceramic material with electrolytic interval-dressing (ELID-II) grinding, Journal of Materials Processing Technology 105 (2000) 284-293.
57. C. Zhang, H. Ohmori, W. Li, Precision shaping of small diameter wheels using micro electric discharge truing (MEDT) and hole-machining of Al2O3 material, International Journal of Machine Tools and Manufacture 40 (2000) 661-674.
58. H. Onikura, O. Ohnishi, Y. Take / A Kobayashi, Fabrication of micro carbide tools by ultrasonic vibration grinding, Annals of the CIRP 49 (1) (2000) 257-260.
59. J. Zhao, J. Zhan, R. Jin, M. Tao, An oblique ultrasonic polishing method by robot for free-form surface, International Journal of Machine Tools and Manufacture 40 (6) (2000) 795-808.
60. 吳偉堯、郭佳儱、李季龍、游智翔、黃俊德、解安國,電解微針狀成形及氣中放電製作微球狀電極之研究,第十九屆機械工程研討會論文,第四冊製造與材料(下) (2002) 731-738.
61. 張耿維、許榮宗、顏炳華、張榮顯,磁力研磨應用於放電加工表面改善的研究,第十八屆機械工程研討會論文,第四冊製造與材料(下) (2001) 555-562.
62. 張志雄,以純水為加工液之微細放電加工研究,中央大學機械工程研究所碩士論文, 1994.
63. 楊景棠,微細電極開發與微細深孔放電加工之研究,中央大學機械工程研究所碩士論文, 1996.
64. 洪志呈,添加粉末對鈦合金微細槽放電加工特性之研究,中央大學機械工程研究所碩士論文, 1998.
65. H.M. Chow, C.T. Yang, B.H. Yan, F.Y. Huang, Fabrication of micro electrode of carbide and micro hole machining characteristics of Ti-6Al-4V alloy by electrical discharge machining, Journal of Japan Institute of Light Metal 49 (1) (1999) 2-7.
66. W. Zhao, Z. Wang, S. Di, G. Chi, H. Wei, Ultrasonic and electric discharge machining to deep and small hole on titanium alloy, Journal of Materials Processing Technology 120 (2002) 101-106.
67. K. Egashira, T. Masuzawa, M. Fujino, Micro ultrasonic machining method by precise tool rotation and workpiece vibration, International Conference on Precision Engineering ICPE’97 (1997) 543-546.
68. T.B. Thoe, D.K. Aspinwall, N. Killey, Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy, Journal of Materials Processing Technology 92 (1999) 323-328.
69. J.S. Lee, D.W. Lee, Y.H. Jung, W.S. Chung, A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting, Journal of Materials Processing Technology 130-131 (2002) 396-400.
70. 陳嘉舜、郭佳儱,電極材料對於圓盤放電特性影響之研究,第十八屆機械工程研討會論文,第四冊製造與材料(下) (2001) 571-578.
71. 梁輝源、郭佳儱,矩陣式微孔與軸量產技術之研究,雲林科技大學機械工程研究所論文, 2003.
72. Y. Kato, Y. Ueoka, E. Kono, E. Hagimoto, Solder bump forming using micro punching Technology, Electronic Manufacturing Technology Symposium 4-6 (1995) 117-120.
73. B.Y. Joo, S.I. Oh, B.H. Jeon, Development of micro punching system, Annals of the CIRP 50 (1) (2001) 191-194.
74. 陳國亮、劉舜逢、莊殷、沈昌和,利用比例電磁線圈於微衝壓系統與微小模孔加工製作,第十二屆全國自動化科技研討會論文,國立虎尾技術學院,2001年5月。
75. T.B. Thoe, D.K. Aspinwall, M.L.H. Wise, Review on Ultrasonic Machining, International Journal of Machine Tools & Manufacture 38 (1998) 239-255.
76. M. Schena, R.A. Heller, etc., Microarrays: biotechnology’s discovery platform for functional genomics, Trends in Biotechnology 16 (1998) 301-306.
77. L.R. Allain, M. Askari, D.L. Stokes, T. Vo-Dinh, Microarray sampling-platform fabrication using bubble-jet technology for a biochip system, Fresenius J Anal Chem, 371 (2001) 146-150.
78. T. Shinmura, K. Takazawa, E. Hatano, M. Matsunaga, Study on magnetic abrasive finishing, Annals of the CIRP 39 (1) (1990) 325-328.
79. T. Mori, K. Hirota, etc., Die making of ultra-fine piercing by electric discharge machining, International symposiumon micromechatronics and human science ‘02 IEEE (2002) 61-66.