跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃雅翎
Ya-ling Huang
論文名稱: 具隨機效應與時間尺度之伽瑪加速衰退隨機過程的貝氏可靠度分析
Bayesian Reliability Analysis of Constant-Stress Accelerated Degradation Based on Gamma Process with Random Effect and Time-Scale Transformation
指導教授: 樊采虹
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 恆定應力加速衰退試伽碼隨機過程隨機效應混合先驗分佈馬可夫鏈蒙地卡羅法貝氏理論
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加速衰退試驗(accelerated degradation test, ADT)常被用來推估高可靠度產品的可靠度資訊,透過一與壽命具高度相關之品質特徵值(Quality Characteristics, QC)在試驗中隨著時間逐漸衰退的觀測資料建構衰退模型,進而轉換成產品壽命分配以估計產品的可靠度。本文以貝氏方法分析衰退特徵值為具隨機效應的伽瑪隨機過程(Gamma process)之恆定應力加速衰退試驗,其中觀測時間經指數轉換後加速應力與伽瑪隨機過程之形狀參數為對數線性關係,且尺度參數具伽瑪隨機效應。為確認指數轉換之必要性,我們以單一質量和連續型的混合先驗分佈,經馬可夫鏈蒙地卡羅法(MCMC)選擇適當的模型,進而得到正常使用狀態下產品的貝氏可靠度推論。此外並考慮類似產品在正常使用應力下的衰退試驗,以更新先驗分佈之序列預測的方法推估產品的平均失效時間,並在滿足預設的準確度要求下同時決定試驗終止時間。最後利用模擬資料驗證貝氏方法在模型選擇上的效益和準確性,並將本文方法應用至一LED 燈泡亮度衰退實例資料中。


    Accelerated degradation tests have been widely used to assess the lifetime information of highly reliable products. In this thesis, we apply Bayesian approach to the degradation data collected from quality characteristics of different products under higher than normal stress levels based on random effect gamma process model with time-scale transformation, and a log linear link function for associating the covariates. We consider a mixture prior to identify the parameter of time-scale transformation. An advantage of mixture priors is that it can automatically identify the time-scale transformation in the MCMC procedure. Reliability inference of the failure time distribution under normal use condition will be described through the posterior sample of the underlying parameters
    obtained from the MCMC procedure. Sequentially predictive inference on individual reliability under normal condition based on conditional distribution is also proposed. Simulation study is presented to evaluate the performance of the proposed method, and discuss model fitting issue regarding the random effect gamma process model and non-random effect gamma process model via DIC model selection criteria. The proposed method is applied to the LED light intensity data as well.

    目錄 摘要i Abstract ii 誌謝iii 目錄iv 圖目次vi 表目次vii 第一章緒論1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻背景與探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章伽瑪隨機過程之恆定應力加速衰退模型6 2.1 加速衰退試驗與可靠度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 最大概似估計法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 貝氏可靠度推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 貝氏估計與模型選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 貝氏可靠度推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 第三章具隨機效應之伽瑪隨機過程加速衰退模型18 3.1 隨機效應模型介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 貝氏估計與可靠度推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 第四章貝氏序列預測推論24 4.1 正常使用下類似產品之衰退模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 先驗分佈之序列更新. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 貝氏序列預測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.1 衰退路徑之序列預測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.2 失效時間條件分佈之序列預測. . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 序列預測之試驗終止時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 第五章模擬研究與實例分析32 5.1 加速衰退模型資料之可靠度分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 具隨機效應加速衰退模型資料之可靠度分析. . . . . . . . . . . . . . . . . . . . . . 40 5.3 模型選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.4 貝氏序列預測與試驗終止時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.5 LED燈衰退資料實例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 第六章結論與展望54 參考文獻55

    參考文獻
    [1] Abramowitz, M. and Stegun, I. (1972). Handbook of Mathematical Functions: with Formulas,
    Graphs, and Mathematical Tables, Dover, New York.
    [2] Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models: Modeling and Statistical
    Analysis, Chapman & Hall, New York.
    [3] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second Edition),
    Springer-Verlag, New York.
    [4] Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions. Journal of
    Applied Probability, 6, 319–327.
    [5] Casella, G. and Berger, R. (2002). Statistical Inference (Second Edition), Buxbury, Los Angeles.
    [6] Chaluvadi, V. N. H. (2008). Accelerated life testing of electronic revenue meters, Ph.D. dissertation,
    Clemson Univ., Clemson, SC, USA.
    [7] Efron, B. (1979). Bootstrap method: another look at the jacknife. Annals of Statistics, 17,
    1–26.
    [8] Escobar, L. A. and Meeker, W. Q. (2006). A review of accelerated test models. Statistical
    Science, 21, 552–577.
    55
    [9] Fan, T. H., Wang, Y. F., and Zhang, Y. C. (2007). Bayesian model selection in linear mixed
    effects models with autoregressive(p) errors using mixture priors. Journal of Applied Statistic,
    41, 1814–1829.
    [10] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
    restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
    721–741.
    [11] Graves, T. L., Hamada, M. S., Klamann, R., Koehler, A., and Martz, H. F. (2007). A fully
    Bayesian approach for combining multi-level informaion in multi-state fault tree quantification.
    Reliability Engineering and System Safety, 92, 1476–1483.
    [12] Hamada, M., Martz, H. F., Reese, C. S., Graves, T., Johnson, V., and Wilson, A. G. (2004). A
    fully Bayesian approach for combining multilevel failure information in fault tree quantification
    and optimal follow-on resource allocation. Reliability Engineering and System Safety, 86, 297–
    305.
    [13] Hasting, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
    Biometrika, 57, 97–109.
    [14] Lawless, J. and Crowder, M. (2004). Covariates and random effects in a gamma process model
    with application to degradation and failure. Lifetime Data Analysis, 10, 213–227.
    [15] Ling, M. H., Tsui, K. L., and Balakrishnan, N. (2014). Accelerated degradation analysis for
    the quality of a system based on the gamma process. IEEE Transactions on Reliability, 64,
    463–472.
    56
    [16] Lu, C. J., Meeker, W. Q., and Escobar, L. A. (1996). A comparison of degradation and
    failure-time analysis methods for estimating a time-to-failure distribution. Statistica Sinica,
    6, 531–546.
    [17] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, Wiley, New
    York.
    [18] Meeker, W. Q., Escobar, L. A., and Lu, C. J. (1998). Accelerated degradation tests: modeling
    and analysis. Technometrics, 40, 89–99.
    [19] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis,
    John Wiley & Sons, New York.
    [20] Padgeet, W. and Tomlinson, M. A. (2004). Inference from accelerated degradation and failure
    data based on Gaussian process models. Lifetime Data Analysis, 10, 191–206.
    [21] Pan, Z. Q. and Balakrishnan, N. (2011). Reliability modeling of degradation of products with
    multiple performance characteristics based on gamma processes. Reliability Engineering and
    System Safety, 96, 949–957.
    [22] Park, C. and Padgett, W. J. (2005). Accelerated degradation models for failure based on
    geometric Brownian motion and gamma processes. Lifetime Data Analysis, 11, 511–527.
    [23] Park, C. and Padgett, W. J. (2006). Stochastic degradation models with several accelerating
    variables. IEEE Transactions on Reliability, 55, 379–390.
    [24] Peng, C. Y. and Tseng, S. T. (2010). Progressive-stress accelerated degradation test for highlyreliable
    products. IEEE Transactions on Reliability, 59, 30–37.
    [25] Singpurwalla, N. D. (1995). Survival in dynamic environments. Statistical Science, 10, 86–103.
    57
    [26] Tsai, C. C., Tseng, S. T., and Balakrishnan, N. (2011). Mis-specification analyses of gamma
    and wiener degradation processes. Journal of Statistical Planning and Inference, 141, 3725–
    3735.
    [27] Tsai, C. C., Tseng, S. T., and Balakrishnan, N. (2012). Optimal design for degradation tests
    based on gamma processes with random effects. IEEE Transactions on Reliability, 61, 604–
    613.
    [28] van Noortwijk, J. (2009). A survey of the application of gamma processes in maintenance.
    Reliability Engineering and System Safety, 94, 2–21.
    [29] Wang, X. (2008). A pseudo-likelihood estimation method for nonhomogeneous gamma process
    model with random effects. Statistica Sinica, 18, 1153–1163.
    [30] Wang, L., Pan, R., Li, X., and Jiang, T. (2013). A Bayesian reliability evaluation method
    with integrated accelerated degradation testing and field information. Reliability Engineering
    and System Safety, 112, 38–47.
    [31] Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process subject to
    measurement error. Lifetime Data Analysis, 1, 307–319.
    [32] Whitmore, G. A. and Schenkelberg, F. (1997). Modeling accelerated degradation data using
    Wiener diffusion with a scale transformation. Lifetime Data Analysis, 3, 27–45.

    QR CODE
    :::