| 研究生: |
簡佑安 Yu-An Chien |
|---|---|
| 論文名稱: |
異質性水文地質模型於地下水數值模擬之應用——以臺北盆地為例 The Groundwater Numerical Modeling on a 3D Heterogeneous Hydrogeological Model in Taipei Basin, Taiwan |
| 指導教授: |
王士榮
Shih-Jung Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 異質性水文地質模型 、地下水模擬 、馬可夫鏈法 、MODFLOW 、臺北盆地 |
| 外文關鍵詞: | Heterogeneous hydrogeological Model, Groundwater modeling, Taipei Basin, Markov Chain, MODFLOW |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去,臺北盆地依賴地下水做為重要水資源之一,然而大量抽取地下水造成了地下水位逐年下降,進而導致嚴重的地層下陷問題。自1958年起實施的地下水管制措施有效減緩了地下水位的下降和地層下陷,但隨著地下水位回升,過高的地下水位將使工程施工成本增加並增加施工風險,且可能提高土壤液化潛勢。地質材料的空間分布、地質模型架構,以及地下水流場之動態特性,為評估地層下陷與土壤液化之基礎。因此,本研究建立異質性水文地質模型,以產製未調查區域的水文地質資料,並應用MODFLOW程式進行地下水數值模擬,以提供無觀測區域的地下水資訊。
臺北盆地由古新店溪、大漢溪、基隆河堆積而成,沉積層分布呈現相當大的空間變異性。本研究將臺北盆地內第四紀地層,依照水文地質特性劃分為較低透水性之松山層以及其下方由透水性較佳之礫石、砂組成之主要含水層;並篩選地質鑽探資料,應用轉移機率-馬可夫鏈法,計算各材料之空間連續性與建立松山層異質性水文地質模型。
研究結果顯示,臺北盆地中南北向地質材料的空間連續性優於東西向;而後挑選具長期觀測區間之地下水位結合水文地質模型,透過地下水模擬系統(Groundwater Modeling System, GMS)中的MODFLOW程式,建立臺北盆地地下水數值模式並進行穩態模式率定。模式水位與地下水位觀測資料相比,第一分層和第二分層的決定係數(R2)分別為0.95和0.83,而均方根誤差(RMSE)則分別為0.56及0.60公尺。在增加或減少一成之抽水量案例模擬中,其水位變化保持在一公尺之內,代表臺北盆地有潛力提供更多的水資源。本研究成果將可提供臺北盆地地下水資源管理之參考,使現有地下水資源得以妥善運用。
In the past, a large amount of pumping led to a continuous decrease in the groundwater level in the Taipei Basin, resulting in severe land subsidence. Subsequently, the implementation of a policy prohibiting groundwater pumping led to an increase in the groundwater level. However, this caused engineering problems, such as soil liquefaction. The spatial distribution of geological materials, the geology structure, and the groundwater level are essential for evaluating land subsidence and soil liquefaction. This study develops a heterogeneous hydrogeological model and applies the MODFLOW module for assessing the groundwater level.
Initially, a three-dimensional heterogeneous hydrogeological model in the study area was constructed. Non-consolidated sediment in the Taipei Basin is divided into two main layers. The first layer is the Songshan formation, primarily formed of fine grain materials, such as sand and clay. The second layer is a confined gravel layer below the Songshan formation. Transition probability - Markov chain approach was adopted to analyze the borehole data and generate realizations of the heterogeneous hydrogeological model in the first layer. The results show that the north-south spatial continuity of geological materials in the Taipei Basin is superior to the east-west direction. Furthermore, the hydrogeological model showed a 0.76% consistency with the borehole data.
Subsequently, the hydrogeological model was combined with the groundwater observation data for calibration to the steady-state groundwater level through MODFLOW packages in the Groundwater Modeling System (GMS) software. Compared to observed groundwater level, the coefficients of determination (R²) for the first and second layers were 0.95 and 0.83, respectively, while the root mean square errors (RMSE) were 0.56 and 0.60 meters. Water level changes remained within one meter when pumping volumes were increased or decreased by ten percent, indicating the potential of the Taipei Basin to provide additional water resources. The results provide a reliable assessment for groundwater resource management in the Taipei Basin in the future.
1.Carle, S. F. (1996). Transition Probability-based Indicator Geostatistics. Mathematical Geology, 28, 453-476.
2.Carle, S. F. (1999). T-PROGS: transition probability geostatistical software, version 2.1. Department of Land, Air and Water Resources, University of California, Davis.
3.Carle, S. F., Esser, B. K., & Moran, J. E. (2006). High-resolution simulation of basin-scale nitrate transport considering aquifer system heterogeneity. Geosphere, 2(4).
4.Carle, S. F., & Fogg, G. E. (1997). Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29, 891-918.
5.Chen, C.T., Hu, J.C., Lu, C.Y., Lee, J.C., & Chan, Y.-C. (2007). Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Engineering Geology, 95(1-2), 30-47.
6.Domenico, P. A., & Schwartz, F. W. (1990). Physical and Chemical Hydrogeology. New York: John Wiley and Sons.
7.Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process (Vol. 6): US Department of the Interior, US Geological Survey Reston, VA, USA.
8.Hwang, J. M., & Wu, C. M. (1970). Land subsidence problems in Taipei basin. Land subsidence: proceedings of the Tokyo Symposium, 21-34.
9.Juang, C. H., Gong, W., Martin, J. R., & Chen, Q. (2018). Model selection in geological and geotechnical engineering in the face of uncertainty - Does a complex model always outperform a simple model? Engineering Geology, 242, 184-196.
10.Krumbein, W. C., & Dacey, M. F. (1969). Markov Chains and Embedded Markov Chains in Geology. Mathematical Geology, 1, 79-96.
11.McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.
12.Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., & Troldborg, L. (2012). Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Advances in Water Resources, 36, 36-50.
13.Rushton, K. R. (2004). Groundwater Hydrology: Conceptual and computational models. John Wiley & Sons.
14.Su, P. J., Lin, A. T. S., Hu, J. C., & Teng, L. S. Y. (2018). Tectonic controls on the stratigraphic development of the rifted Taipei Basin: A late quaternary marine-influenced inland half graben. Quaternary International, 482, 27-45.
15.Tran, D. H., Wang, S. J., & Nguyen, Q. C. (2022). Uncertainty of heterogeneous hydrogeological models in groundwater flow and land subsidence simulations – A case study in Huwei Town, Taiwan. Engineering Geology, 298, 106543.
16.Weissmann, G. S., & Fogg, G. E. (1999). Multi-scale alluvial fan heterogeneity modeled with transition geostatistics in a sequence stratigraphic framework. Journal of Hydrology, 226(1-2), 48-65.
17.經濟部地質調查及礦業管理中心,2014。地下水水文地質與補注模式研究-補注區劃設與資源量評估(2臺北盆地),國立陽明交通大學。
18.江崇榮,張閔翔,林燕初,黃智昭,蘇泰維,陳瑞娥,2012。臺北盆地之水文地質初探,大臺北地區防災地質研討會論文集。
19.吳建民,1968。臺北盆地地盤沈陷問題之研究,水利工程,4,53-81。
20.周彥呂,2008。臺北盆地地下水利用可行性之評估及管理,國立台灣大學生物資源暨農學院生物環境系統工程學系碩士論文。
21.林佩儀,2007。晚第四紀以來臺北盆地沉積物的組成特性,國立臺灣大學理學院地質科學系暨研究所碩士論文。
22.林紹弘,2018。利用持久性散射體合成孔徑雷達干涉技術與數值模型探討臺北盆地地下水引起的地表變形與水力參數,國立臺灣大學理學院地質科學系暨研究所碩士論文。
23.林銘軒,2012。臺北盆地水文地質架構及地層下陷之探討,國立臺灣大學理學院地質科學系暨研究所碩士論文。
24.林頤謙,2023。考慮地質模型與參數不確定性對Vs30分布圖之影響—以臺北盆地測試區為例,國立中央大學應用地質研究所碩士論文。
25.陳文山,林朝宗,楊志成,費立沅,謝凱旋,龔慧敏,楊小青,2008。 晚期更新世以來臺北盆地沉積環境與構造演化的時空演變,經濟部中央地質調查所彙刊,21,61-106。
26.黃水添,陳景文,2002。臺北盆地地下水位改變對地層下陷與液化潛能與之影響,國立成功大學土木工程研究所碩士論文。
27.歐晉德,李延恭,鄭在仁,1983。臺北盆地松山層地下水位及水壓分佈對基礎工程影響,土木水利,10(3),89-102。
28.鄧屬予,2006。臺北盆地地質研究,西太平洋地質科學,6,1-28。
29.鄭文柱,2004。臺北盆地地下水位變化對土壤液化潛勢及地層下陷之影響,國立成功大學土木工程研究所碩士論文。
30.譚志豪,冀樹勇,顧承宇,林坤霖,2004。臺北盆地區域性三圍地下水流動數值模擬,工程技術,93。
31.蘇品如,林殿順,胡植慶,2016。臺北盆地景美層岩相及沉積演育新解,經濟部中央地質調查所彙刊,29,173-196。