跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江子良
Zih-Liang Chiang
論文名稱: 以社群平台研究區域與議題之間的關係
Investigating the relationships between geographical closeness and popular topic similarity on Twitter
指導教授: 許秉瑜
Ping-Yu Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 49
中文關鍵詞: 社群網站社群網路議題分析議題地區Twitter
外文關鍵詞: social network, text mining, topic mining, region, twitter, social website
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於社群網路的蓬勃發展,人們越來越依賴社群網路關注時事動態,並成為人與人之間討論的議題,在社群網路的特性中,發文狀態擁有簡短、在地的特性,而累積的資料數量卻十分龐大,卻不見學者研究如何利用這些發文特性,研究議題彼此間的區域影響關係,並加以影響日常生活人們討論的關心議題。
    本研究收錄美國熱門社群網路平台 Twitter 使用者張貼的訊息、區域資料,以16州使用者為例,選取適合的使用者討論的議題數量,並分群議題區域,探討鄰近城市是否會關心相似的議題,找出重要的議題區域以及各城市在議題之間的關聯。
    本研究的實驗結果發現,本研究的方法能證實鄰近城市關心類似的議題,並加以找出適合的議題。這些實驗結果,應有助於地方性實體行銷活動、地方性網路廣告投放,以及政府地方性政策或服務行銷商,研判如何在有限的財務、人力、時間資源內,實現策略管理目標。


    Since the rise of social media, people spend more time reading news articles from different social media platforms, making it a relevant and important for people to discuss in person. One characteristic of social networking platforms is their location-based features where one can tag their current whereabouts. Many people have been doing this in the past however, researchers have not delved into the relationship between the occurrence from one region to another; this implies that a topic occurring in some other place can affect the topic of discussion of another.

    The research collects posts with location information from the users of the most popular social media platforms, such as Twitter, which enables them to find proper topics in those regions. The research results are dedicated to help local marketing strategies, local advertising postings, local service strategies, and local government strategies; mainly, projects with limited financial budget, human resource, and time to achieve specific goals.

    The results of this research will help the efficiency of our current resource that will ultimately reach our goals.

    中文摘要 i Abstract ii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1研究背景與動機 1 1.2 研究目的 3 1.3研究架構 3 第二章 文獻探討 5 2.1 Twitter社群網站 5 2.2 議題分析 6 2.3 自組織映射圖網路 8 第三章 研究方法 11 3.1 研究設計 11 3.1.1資料蒐集 12 3.1.2資料整理 13 3.1.3議題與區域之間的關聯 15 3.1.4適當的議題與區域數量 15 第四章 研究實作 20 4.1 資料分析 20 4.1.1 資料前處理 20 4.1.2 實驗結果 20 第五章 結論與未來研究建議 35 5.1研究結論 34 參考文獻 35

    [1] . Wu, S., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011). Who says what to whom on Twitter. In Proceedings of the 20th International Conference on World Wide Web (pp. 705–714). New York, NY: ACM. Retrieved from http://doi. org/10.1145/1963405.1963504
    [2] Zhang, Y., & Leung, L. (2014). A review of social networking service (SNS) research in communication journals from 2006 to 2011. New Media & Society. Retrieved from http://doi. org/10.1177/1461444813520477
    [3] Zhou, Z., Bandari, R., Kong, J., Qian, H., & Roychowdhury, V. (2010). Information resonance on Twitter: Watching Iran. In Proceedings of the First Workshop on Social Media Analytics (pp. 123–131). New York, NY: ACM. Retrieved from http:// doi.org/10.1145/1964858.1964875
    [4] Yang, S. C., Chang, W. T., Hsiao, Y. T., & Chen, B. Y. (2014). The effects of perceived value on Facebook post sharing inten- tion. In Proceedings of the 12th International Conference on Advances in Mobile Computing and Multimedia (pp. 444–450). New York, NY: ACM. Retrieved from http://doi. org/10.1145/2684103.2684171
    [5] Nielsen, R. K., & Schrøder, K. C. (2014). The relative importance of social media for accessing, finding, and engaging with news: An eight-country cross-media comparison. Digital Journalism, 2, 472–489. Retrieved from http://doi.org/10.1080/21670811. 2013.872420
    [6] Nunnally J C. Psychometric theory. New York: McGraw Hill, 1967, 640 p. Retrieved from http://garfield.library.upenn.edu/classics1979/A1979HZ31300001.pdf
    [7] Susarla, A., Oh, J.-H., & Tan, Y. (2012). Social networks and the diffusion of user-generated content: Evidence from YouTube. Information Systems Research, 2323–41. Retrieved from http:// doi.org/10.1287/isre.1100.0339
    [8] Rosengard, D., Tucker-McLaughlin, M., & Brown, T. (2014). Students and social news. How college students share news through social media. Electronic News, 8, 120–137. Retrieved from http://doi.org/10.1177/1931243114546448
    [9] Morgan, J. S., Lampe, C., & Shafiq, M. Z. (2013). Is news sharing on Twitter ideologically biased? In Proceedings of the 2013 Conference on Computer Supported Cooperative Work (pp. 887–896). New York, NY: ACM. Retrieved from http://doi. org/10.1145/2441776.2441877
    [10] Myers, S. A., Zhu, C., & Leskovec, J. (2012). Information diffusion and external influence in networks (CoRR, abs/1206.1331). Retrieved from http://arxiv.org/abs/1206.1331
    [11] TrackMaven(2016). The Content Marketing Paradox.
    [12] Weber & Monge(2011). The Flow of Digital News in a Network of Sources, Authorities, and Hubs
    [13] S Arora (2012). Learning Topic Models-Going beyond SVD
    [14] KS Gurumoorthy (2013).Beyond SVD: Sparse Projections Onto Exemplar Orthonormal Bases for Compact Image Representation
    [15] Thomas Hofmann(1999).Probabilistic Latent Semantic Analysis
    [16] 莊克仁(2015). 圖解民意與公共關係(p229)
    [17] Shuang Yang, Chunfeng Yuan, Weiming Hu(2014).A Hierarchical Model Based on Latent Dirichlet Allocation for Action Recognition
    [18] HONGZHI YIN(2011), Modeling Location-Based User Rating Profiles for Personalized Recommendation
    [19] Sueli A. Mingoti *, Joab O. Lima(2005).Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms
    [20] Yi Yang, Doug Downey(2015).Efficient Methods for Incorporating Knowledge into Topic Models
    [21] A Asuncion(2009).On Smoothing and Inference for Topic Models
    [22] Weeks, B. E., & Holbert, R. L. (2013).Predicting dissemination of news content in social media: A focus on reception, friend- ing, and partisanship. Journalism & Mass Communication Quarterly, 90, 212–232. Retrieved from http://doi.org/10.1177/ 1077699013482906
    [23] Anna Sophie Kümpel, Veronika Karnowski, and Till Keyling(2015).News Sharing in Social Media: A Review of Current Research on News Sharing Users, Content, and Networks
    [24] H. Kwak (2010). What is Twitter, a social network or a news media? ACM. Retrived from dl.acm.org/citation.cfm?id=1772751
    [25] X Cheng (2014). BTM: Topic Modeling over Short Texts. IEEE Retrived from https://www.computer.org/csdl/trans/tk/preprint/06778764.pdf
    [26] Ma, L., Lee, C. S., & Goh, D. H.-L. (2013). Investigating influential factors influencing users to share news in social media: A diffusion of innovations perspective. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 403–404). New York, NY: ACM. Retrieved from http://doi. org/10.1145/2467696.2467749
    [27] Ma, L., Lee, C. S., & Goh, D. H.-L. (2014). Understanding news sharing in social media. An explanation from the diffusion of innovations theory. Online Information Review, 38, 598–615. Retrieved from http://doi.org/10.1108/OIR-10-2013-0239
    [28] M Cataldi, (2010).Retrieved from http://users.cis.fiu.edu/~lzhen001/activities/KDD_USB_key_2010/workshops/W07%20MDMKDD2010/MDMKDD2010_04.pdf
    [29] Mitchell, A., Holcomb, J., & Page, D. (2013). News use across social media platforms. Pew Research Center. Retrieved from http://www.journalism.org/files/2013/11/News-Use-Across- Social-Media-Platforms1.pdf
    [30] Holton, A. E., Baek, K., Coddington, M., & Yaschur, C. (2014). Seeking and sharing: Motivations for linking on Twitter. Communication Research Reports, 31, 33–40. Retrieved from http://doi.org/10.1080/08824096.2013.843165
    [31] Hong, L., Dan, O., & Davison, B. D. (2011). Predicting popular messages in Twitter. In Proceedings of the 20th International Conference Companion on World Wide Web (pp. 57–58). New York, NY: ACM. Retrieved from http://doi. org/10.1145/1963192.1963222
    [32] Horan, T. J. (2013). “Soft” versus “hard” news on microblogging networks. Information, Communication & Society, 16, 43–60. Retrieved from http://doi.org/10.1080/1369118X.2011.649774
    [33] Hu, M., Liu, S., Wei, F., Wu, Y., Stasko, J., & Ma, K.-L. (2012). Breaking news on Twitter. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2751–2754). New York, NY: ACM. Retrieved from http://doi. org/10.1145/2207676.2208672
    [34] Kim, M., Newth, D., & Christen, P. (2014). Trends of news dif- fusion in social media based on crowd phenomena. In Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion (pp. 753–758). Geneva, Switzerland: International World Wide Web Conferences Steering Committee. Retrieved from http://doi.org/10.1145/2567948.2579325
    [35] M Cataldi (2010) Retrived from http://users.cis.fiu.edu/~lzhen001/activities/KDD_USB_key_2010/workshops/W07%20MDMKDD2010/MDMKDD2010_04.pdf
    [36] Ju, Jeong, & Chyi, 2014 Will Social Media Save Newspapers? Retrieved from http://www.tandfonline.com/doi/abs/10.1080/17512786.2013.794022#.V0Po8ZN950s
    [37] R Zafarani 2014 Social Media Mining: An Introduction Retrieved from http://dmml.asu.edu/smm/SMM.pdf
    [38] Kiousis, S. (2002). Interactivity: A concept explication. New Media & Society, 4, 355–383. Retrieved from http://doi. org/10.1177/146144480200400303
    [39] Hao Wang and Wu-Jun (2015) IEEE. Retrived from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6940223
    [40] Kostkova, P., Szomszor, M., & St.Louis, C. (2014). #swineflu: The use of Twitter as an early warning and risk communica- tion tool in the 2009 swine flu pandemic. ACM Transactions on Management Information Systems (TMIS), 5(2), 8:1–8:25. Retrieved from http://doi.org/10.1145/2597892
    [41] Fahmy, N. A.-S. (2012). News diffusion and facilitation of conver- sation. Journal of Middle East Media, 8(1), 1–21.
    [42] Ferrara, E., Interdonato, R., & Tagarelli, A. (2014). Online popularity and topical interests through the lens of Instagram. In Proceedings of the 25th ACM Conference on Hypertext and Social Media (pp. 24–34). New York, NY: ACM. Retrieved from http://doi.org/10.1145/2631775.2631808
    [43] Forest, A. L., & Wood, J. V. (2012). When social networking is not working: Individuals with low self-esteem recognize but do not reap the benefits of self-disclosure on Facebook. Psychological Science, 23, 295–302. Retrieved from http://doi. org/10.1177/0956797611429709
    [44] Fuchs, C. (2014). Social media: A critical introduction. Thousand Oaks, CA: SAGE.
    [45] Gil de Zúñiga, H., Jung, N., & Valenzuela, S. (2012). Social media use for news and individuals’ social capital, civic engagement and political participation. Journal of Computer-Mediated Communication, 17, 319–336. Retrieved from http://doi. org/10.1111/j.1083-6101.2012.01574.x
    [46] Boczkowski, P. J., & Mitchelstein, E. (2012). How users take advan-
    tage of different forms of interactivity on online news sites: Clicking, e-mailing, and commenting. Human Communication Research, 38, 1–22. Retrieved from http://doi.org/10.1111/ j.1468-2958.2011.01418.x
    [47] boyd, d. (2015). Social media: A phenomenon to be analyzed. Social Media + Society, 1. Retrieved from http://doi. org/10.1177/2056305115580148

    QR CODE
    :::