跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李明憶
Ming-Yi Lee
論文名稱: 奇異積分算子的加權模不等式
Weighted Norm Inequalities ofSingular Integral Operators
指導教授: 林欽誠
chin-cheng Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 90
語文別: 英文
論文頁數: 54
中文關鍵詞: 加權哈弟空間分子刻劃
外文關鍵詞: molecular characterization, weighted Hardy spaces
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章主要證明奇異積分算子在加權哈弟空間上的有界性. 首先我們簡單介紹傳統哈弟空間的歷史及一些性質,
    進而探討這些性質是否在加權哈弟空間上亦成立. 在此篇文章中加權函數皆為 A_p 權函數. 在第二章中即說明 A_p 權函數的起源,並給出 A_p 權的定義和一些基本性質. 值得一提的是, 這些性質在證明算子的加權有界性時給了我們莫大的幫助.
    第三章定義了加權哈弟空間上的原子和分子, 並證明加權原子和加權分子保持某種平移不變性. 此外, 本章節亦給出加權哈弟空間上的原子分解和
    分子刻劃, 並說明如何利用這兩個定理可以較容易地證明算子的加權有界性.第四, 五, 六和七章則利用此一特性分別針對特定的奇異積分算子來研究其加權有界性.
    在第四章中, 假設捲積算子的核滿足較好的條件, 則我們得到捲積算子是H^p_w-H^p_w有界,0<p≦1. 因此, 我們證明了Hilbert 變換和 Riesz 變換為H^p_w-H^p_w 有界, 0<p≦1. 而此定理推廣[LL]中的結果.第五章所研究的算子為 Bochner-Riesz means. 我們證明了它是
    H^p_w-H^p_w有界及它的極大算子是H^p_w-L^p_w有界. 而第六章的算子為齊次分數積分. 我們給出在某些
    條件下, 它是H^p_{w^p}-L^q_{w^q}有界;
    而在某些條件下, 它是H^p_{w^p}-H^q_{w^q}有界. 在第七章中,我們證明 Marcinkiewicz 積分算子是H^p_w-L^p_w 有界.


    In this thesis, we prove the boundedness of singular integral operator on weighted Hardy spaces. We first introduce the some properties of the classical hardy spaces and try to get the same properties on weighted Hardy spaces.
    In this article, the weight function is Ap weight. We introduce the definitions of
    Ap weight and give some properties of Ap in chapter 2. These properties play
    important roles to prove the boundedness of the operators on weighted Hardy spaces.
    In chapter 3, we define weighted atom and weighted molecule and prove
    some translation invariance. Moreover, we also give the atomic decomposition
    theory and the molecular characterization of weighted Hardy spaces. By the
    two theorems, the proof of H^p_w boundedness of the operator on weighted Hardy space becomes easier.
    In chapter 4, we show the convolution operator is bounded on weighted Hardy spaces. Moreover, we also show the Hilbert transform and the Riesz
    transforms are bounded on H^p_w, 0 < p≦1, provided w ε A1. In chapter 5, we show that the Bochner-Riesz means is bounded on H^p_w and its maximal operator is bounded from H^p_w to L^p_w. In chapter 6 we present the weighted
    (Hp,Lq) boundedness of homogeneous fractional integral operator and the weighted (Hp,Hq) boundedness of homogeneous fractional integral operator. In chapter 7, We show that the Marcinkiewicz integral operator is bounded
    from H^p_w to L^p_w.

    Chapter 1. Introduction . . . . . . . . . .. . . . . . . . . . . . . . 1 Chapter 2. Ap Weight . . . . . . . . . . . . . . . . . . . . . . .. . . 5 Chapter 3. Weighted Hardy spaces. . . . . . . . . . . . .. . . . . . . 10 Chapter 4. Hilbert transform and Riesztransform . . . . . . . . . . . . 16 Chapter 5. Bochner-Riesz means . . . . . . . . . . . . . .. . . . . . . 22 Chapter 6. Riesz potential operators . . . . . . . . . . .. . . . . . . 30 Chapter 7. Marcinkiewicz integral . . . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . 49

    [B] S. Bochner,
    Summation of multiple Fourier series by spherical means,
    Trans. Amer. Math. Soc. 40 (1936), 175-207.
    [BCP] A. Benedek, A. Calder´on and R. Panzone,
    Convolution operators on Banach space valued functions,
    Proc. Nat. Acad. Sci. USA 48 (1962), 356-365.
    [C] L. Colzani,
    Hardy and Lipschitz spaces on unit spheres,
    ph.D. Thesis, Washington University, St Louis, 1982.
    [Co] R. R. Coifman,
    A real-variable characterization of Hp,
    Studia Math. 51 (1974), 269-274.
    [CF] R. R. Coifman and C. Fe erman,
    Weighted norm inequalities for maximal functions and singular
    integrals,
    Studia Math. 51 (1974), 241-250.
    [CTW] L. Colzani, M. Taibleson, and G. Weiss,
    Maximal estimates for Ces`aro and Riesz means on sphere,
    Indiana Univ. Math. J. 33 (1984), 873-889.
    [D] J. Duoandikoetxea,
    Weighted norm inequalities for homogeneous singular integrals,
    Trans. Amer. Math. Soc. 336 (1993), 869-880.
    [DFP1]Y. Ding, D. Fan, and Y. Pan,
    Weighted boundedness for a class of rough Marcinkiewicz integral,
    Indiana Univ. Math. J. 48 (1999), 1037-1055.
    [DFP2] _
    Lp-boundedness of Marcinkiewicz integrals with Hardy space function
    kernels,
    Acta Math. Sinica (English series) 16 (2000), 593-600.
    [DL1] Y. Ding, and S. Lu,
    Weighted norm inequalities for fractional integral operators
    with rough kernel,
    Can. J. Math. 50(1) (1998), 29-39.
    [DL2] _
    Homogeneous fractional integrals on Hardy spaces,
    Tohoku Math. J. 52 (2000), 153-162.
    [FS] C. Fefferman and E. M. Stein,
    Hp spaces of several variables,
    Acta Math. 129 (1972), 137-193.
    [G] J. Garc´ıa-Cuerva,
    Weighted Hp spaces,
    Dissertations Math. 162 (1979), 1-63.
    [GR] J. Garcia-Cuerva and J. Rubio de Francia,
    Weighted Norm Inequalities and Related Topics,
    North Holland, 1985.
    [GW] R. F. Gundy and R. L. Wheeden,
    Weighted integral inequalities for nontangential maximal function,
    Lusin area integral, and Walsh-Paley series,
    Studia Math. 49 (1974), 107-124.
    [HMW] R. Hunt, B. Muckenhoupt, and R. Wheeden,
    Weighted norm inequalities for the conjugate function
    and Hilbert transform,
    Trans. Amer. Math. Soc. 176 (1973), 227-251.
    [K] D. S. Kurtz,
    Littlewood-Paley and multiplies theorems on weighted Lp spaces,
    Trans. Amer. Math. Soc. 259 (1980), 235-254.
    [KW] D. S. Kurtz and R. L. Wheeden,
    Results on weighted norm inequalities for multipliers,
    Trans. Amer. Math. Soc 255, 343-362.
    [L] R. H. Latter,
    A characterization of Hp(Rn) in terms of atoms,
    studia math. 62 (1978), 93-101.
    [LL] M.-Y. Lee and C.-C. Lin,
    The molecular characterization of weighted Hardy spaces,
    J. Funct. Anal. 188 (2002), 442-460.
    [M] B. Muckenhoupt,
    Weighted norm inequalities for the Hardy maximal function,
    Trans. Amer. Math. Soc. 165 (1972), 207-226.
    [R] V. S. Rychkov,
    Littlewood-Paley theory and function spaces with A^loc_p weights,
    Math. Nachr. 224 (2001), 145-180.
    [S1] E. M. Stein,
    Singular Integrals and Differentiability Properties of Functions,
    Princeton Univ. Press, Princeton, NJ, 1970.
    [S2] _
    On the function of Littlewood-Paley, Lusin and Marcinkiewicz,
    Trans. Amer. Math. Soc. 88 (1958), 430-466.
    [S3] _
    Harmonic Analysis,
    Princeton Univ. Press, Princeton, NJ, 1993.
    [Sa1] S. Sato,
    Weak type estimates for some maximal operators on
    the weighted Hardy spaces,
    Ark. Mat. 33 (1995), 377-384.
    [Sa2] _
    Divergence of the Bochner-Riesz means in the weighted Hardy spaces,
    Studia Math. 118 (1996), 261-275.
    [Sj] P. Sj¨olin,
    Convolution with oscillating kernels in Hp spaces,
    J. London Math. Soc. 23 (1981), 442-454.
    [ST] J.-O. Str¨omberg and A. Torchinsky,
    Weighted Hardy Spaces,
    Lecture Notes in Mathematics, vol. 1381, Springer-Verlag, 1989.
    [STW] E. M. Stein, M. H. Taibleson, and G. Weiss,
    Weak type estimates for maximal operators on certain Hp classes,
    Rend. Circ. Mat. Palermo. 2 (1981), suppl. 1, 81-97.
    [SW1] E. M. Stein and G.Weiss,
    Interpolation of operators with change of measures,
    Trans. Amer. Math. Soc 87 (1958), 159-172.
    [SW2] E. M. Stein and G. Weiss,
    On the theory of harmonic functions of several variables I:
    The theory of Hp spaces,
    Acta Math. 103 (1960), 25-62.
    [StW] J.-O. Str¨omberg and R. L. Wheeden,
    fractional integrals on weighted Hp and Lp spaces,
    Trans. Amer. Math. Soc 287 (1985), 293-321.
    [TW] M. H. Taibleson and G. Weiss,
    The molecular characterization of certain Hardy spaces,
    Ast´erisque 77 (1980), Soci´et´e Math. de France, Paris, 67-149.
    [TWa] A. Torchinsky and S. Wang,
    A note on the Marcinkiewicz integral,
    Coll. Math. 61-62 (1990), 235-243.

    QR CODE
    :::