| 研究生: |
謝萬勲 Wan-Syun Sie |
|---|---|
| 論文名稱: |
水中回填砂土之液化改良 |
| 指導教授: |
張惠文
Huei-Wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 水泥改良砂土 、水中回填 、抗分散劑 、無圍壓縮強度 、液化阻抗 |
| 外文關鍵詞: | cement treated sand, reclamation in water, coagulant, unconfined compression strength, cyclic resistance |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為探討改良砂土之水中抗分散特性與改良成效之影響。試驗方式以西螺砂為主要回填材料,並以自由沉降模式模擬改良土之現地水中回填,經取樣後,進行一系列之無圍壓縮試驗與動力三軸試驗。為減少改良砂土於水中回填時所產生之水泥與砂土分離現象,故於改良砂土中添加聚丙烯醯胺或羧甲基纖維素鈉作為抗分散劑,並探討抗分散劑添加率、水泥配比及養治時間對改良土剪力強度與動態性質之影響。
試驗結果顯示,改良砂土之無圍壓縮強度會隨水泥配比之加大而增強。然無圍壓縮強度之變化則因抗分散劑添加率及種類之不同而有所變化。當以羧甲基纖維素鈉為抗分散劑時,改良砂土之無圍壓縮強度隨抗分散劑添加率之增加而持續遞增;而於抗分散劑採用聚丙烯醯胺者,其無圍壓縮強度則隨抗分散劑添加率之增加呈現先遞增而後遞減之趨勢。再者,經由動力三軸試驗結果得知,以羧甲基纖維素鈉為抗分散劑且添加率為3.5 g/kg,水泥配比8 %,養治時間為28天時之試驗條件下,改良砂土之液化阻抗即可獲得大幅改善。因此,添加水泥及抗分散劑確有助於砂土剪力強度之提升與動態特性之改善。
The purpose of this study is focused on the prevention of separation and the improving effects of cement treated sand in water. The Shiluo sand was adopted as the main backfilling material. The water sedimentation method was used to prepare specimens for simulating the actual reclamation in water. A series of unconfined compression tests and cyclic triaxial tests was carried out. In order to avoid the separation of cement and sand particles from treated sand during the process of backfilling in water, two kinds of coagulants (Sodium carboxy methyl cellulose and polyacrylamide) were added into the cement treated sand respectively. The effects of coagulant content, cement content and curing time for treated sand were discussed in this study.
The experimental results showed that the unconfined compression strength of treated sand increased as the cement content increased. The variation of unconfined compression strength would be affected by the coagulant type and coagulant content. When the Sodium carboxy methyl cellulose was used as the coagulant, the unconfined compression strength increased as the coagulant content increased; while the coagulant was changed to polyacrylamide, the values of unconfined compression strength increased initially and then decreased as the coagulant content increased continuously. Furthermore, the cyclic resistance of cement treated sand for curing time of 28 days would be increased significantly due to adding the Sodium carboxy methyl cellulose of 3.5 g/kg and cement content of 8 %. Therefore, the coagulant and cement both can improve the dynamic properties of treated sands effectively.
1. 台泥公司,產品種類,產品資訊部,台北(1999)。
2. 朱志光,「海水對混凝土影響之研究」,碩士論文,國立成功大學土木工程學系,台南(1987)。
3. 李旻釗,「里港砂添加增黏劑CMC之動力強度探討」,碩士論文,國立成功大學土木工程學系,台南(2001)。
4. 吳偉特,「臺灣地區砂性土壤液化潛能之初步分析」,土木水利季刊,第六卷,第二期,第39-70頁(1979)。
5. 邱奇昌,「砂土經水泥改良後之力學性質」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
6. 江善鑫主編,「揭開福爾摩沙的面紗:台灣的自然地理」,行政院文化建設委員會中部辦公室,台中(2000)。
7. 染化雜誌社,染化資訊網站,http://www.dfmg.com.tw/text/ size1e.htm(2006)。
8. 染化雜誌社,染化資訊網站,http://www.dfmg.com.tw/text/ size1f-3b2.htm(2008)。
9. 陳俞蓁,「混凝對表面水濁度去除之研究」,碩士論文,國立成功大學環境工程系,台南(2002)。
10. 陳彥奇,「含海水鹽性改良砂土之力學特性」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
11. 陳榮嵩,「土石壩壩心材料之動態性質研究」,碩士論文,國立中興大學土木工程研究所,台中(1991)。
12. 陳振欣,「高分子應用對水泥質材料性質影響之研究」,博士論文,材料工程研究所,國立台灣海洋大學,基隆(2005)。
13. 張善同,「旋轉灌漿固化地基之技術」,中國鐵道出版社,北京(1984)。
14. 張惠文,「中央大學地盤改良課程講義」,課程講義,國立中央大學土木工程學系,中壢(2008)。
15. 張增宏,「水中回填水泥改良土力學性質與抗液化機制之研究」,博士論文,國立中央大學土木工程學系,中壢(2009)。
16. 張紹民,「水泥改良土在水中沉降機制及其剪力強度」,碩士論文,國立中央大學土木工程學系,中壢(2009)。
17. 善功企等人,水泥混合砂質土回填工法相關研究─改良土之基本特性與混合回填試驗,港灣技研資料,第五百七十九期,第41頁(1987)。
18. 善功企,「液狀化對策之事前混合處理工法之開發」,土與基礎,第三十六卷,第六期,第27-32頁(1990)。
19. 馮愛麗、覃維祖與王宗玉,「絮凝劑品種對水下不分散混凝土性能影響的比較」,石油工程建設,第二十八卷,第四期,第6-9頁(2002)。
20. 黃兆龍,林仁益,郭文田,曾燈聰,「含飛灰水泥漿體乾縮行為與孔隙關係之研究」,中華民國第六屆全國技術及職業教育研討會論文集,台中,第20133~20142 頁,(1991)。
21. 鄭清江,「片狀砂土模擬水力填築後剪力特性之研究」,博士論文,國立中央大學土木工程學系,中壢(1996)。
22. 劉俞亭,「抗分散劑對水泥改良土水中沉降機制及力學特性影響」,碩士論文,國立中央大學土木工程學系,中壢(2008)。
23. 盧彥旭,「水泥系輕質改良土工程性質之研究」,碩士論文,國立成功大學土木工程學研究所,台南(1995)。
24. 蕭達鴻,「砂質土壤添加水泥材料工程特性之研究」,技術學刊,第11卷,第3期,第305-311頁(1996)。
25. 簡連貴,「水力砂土回填技術在造地工程之應用」,地工技術雜誌,第五十一期,第21-34頁(1995)。
26. 事前混合処理工法技術マニュアル,財団法人沿岸開発技術研究センター,日本,(2000)。
27. ASTM C128-07, “Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate,” Annual Book of ASTM Standards, vol. 04.02., pp. 1-7 (2007).
28. Benefield, L.D., Judkins, J.F., Jr., and Weand, B.L., “Process chemistry for water and wastewater treatment,” Preentice-Hall, Inc. Englewood Ciffs (1982).
29. Chen, W.F., and Atef, S., “Constitutive equations for engineering materials,” Elsevier Science, pp.122-123 (1983).
30. Dupas, I.M., and Decker, A., “Static and dynamic properties of sand cement,” Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. GT3, June, pp. 799-817(1981).
31. Hoyer, O., and Schell, H., “Monitoring raw water quality and adjustment of treatment processes-experiences at the wahnbach reservoir,” Wat. Sci. Tech., Vol.37, No. 2, pp.43-48 (1998).
32. Imai, G., “Experimental studies on sedimentation mechanism and sediment formation of clay materials,” Soil and Foundations, Vol. 21, No. 1, pp. 7-20 (1981).
33. La Mer, V.K., “Coagulation symposium introduction,” Jour. Colloid Sci., Vol.19, pp.291-293 (1964).
34. Ladd, R.S., “Specimen preparation and liquefaction of sands,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 110, No. GT10, pp. 1180-1184 (1974).
35. Lee, K., and Seed, H.B., “Cyclic stress condition causing liquefaction of sand,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.93, No. SM1, pp.47-70(1967).
36. Kayode, T.O., and Gregory, J., “A new technique for monitoring alum sludge conditioning,” Wat. Res., Vol.22, No.1, pp85-90 (1986).
37. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Inc, London (1996).
38. Kasama, K., Zen, K., and Iwataki, K., “Undrained shear strength of cement-treated soils,” Soil and Foundations, Vol. 46, No. 2, pp. 221-232 (2006).
39. Katsioti, M., Giannikos, D., Tsakiridis, P.E., and Tsibouki, Z., “Properties and hydration of blended cement with mineral aluntte,” Construction and Building Materials, Vol. 23, pp. 1011-1021 (2009).
40. Metha, P.K., Concrete Structure, Properties and Materials, Prentice-Hall, Englewood Cliff, N.J. (1986).
41. Mindess, S., and Young, J.F., Concrete, Prentice-Hall, Englewood Cliff, N.J. (1981).
42. Placzek, D., “Methods for the calculation of settlements due to ground-water lowering,” Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, Vol. 3, pp. 1813-1818(1989).
43. Ruehrwein, R.A., and Ward, D.W., “Mechanism of clay aggregation by polyelectrolytes,” Soil Science, Vol.73, pp.485-492(1952).
44. Seed, H. B. and Idriss, I. M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, pp.1249-1273 (1971) .
45. Seed, H.B., “Evaluation of soil liquefaction effects on level ground during earthquakes,” Liquefaction Problems in Geotechnical Engineering Session on Soil Dynamics Committee of Geotechnical Engineering Division, ASCE, pp. 1-104(1976).
46. Seed, H.B., and Booker, J.R., “Stabilization of potential liquefiable sand D eposits Using Gravel Drains,” Journal of the Geotechnical Engineering Division, ASCE, Vo.103, No. GT7, pp. 757-768(1977).
47. Sladen, J.A., and Hewitt, K.J., “Influence of placement method on the in-situ density of hydraulic sand fills,” Canadian Geotechnical Journal, Vol.26, pp.453-466(1989).
48. Stumm, W., and Morgan, J.J., “The solid-solution interface,” in Aquatic Chemistry, John Wiley & Sons, Inc., New York, pp. 612-614(1981).
49. Suryavanshi, A. K., Scantlebury, J. D. and Lyon S. B. “Pore Size Distribution of OPC and SRPC Mortars in presence of Chloride,” Cement and Concrete Researce, Vol.25, No.25, pp.980-988 (1995).