跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王蘇傑
Su-Jie Wang
論文名稱: 基於 BIM 的屋頂光伏產量預測分析
BIM-based analysis of roof-top PV power generation prediction
指導教授: 周建成
Chien-Cheng Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: 建築資訊模型太陽能發電光伏產量預測回歸模型
外文關鍵詞: Building Information Modeling, Solar energy generation, Photovoltaic (PV) power generation prediction, Regression model
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球氣候變暖及綠色能源興起的背景下,太陽能作爲首屈一指的清潔能源,具有 分佈廣泛的優勢,由於很多已開發地區的土地資源有限,所以目前建築整合太陽能已經 成爲都市地區發展太陽光電的方向。但是都市發展太陽能需要考慮到都市複雜的環境, 例如臨棟高樓、樹木的影響,其中最為重要的臨棟陰影對屋頂光伏發電裝置的影響。因 此,本研究將基於 BIM 模型,以城市環境為考量,對屋頂的光伏產量做預測。首先是 基於遮擋,考慮到不同的遮擋情形,參數方面選取遮擋物的方位、間距及高差,盡可能 的去模擬真實狀況。接著考慮到不同的地理氣候對城市的影響,例如溫度高低、日照時 間長短等,應搜集具備不同的地理氣候特徵的城市資料,去模擬的光伏產量。最後對整 理後的資料做多元線性回歸,建立預測模型。


    Based on global warming and the rise of green energy, solar energy becomes the leading clean energy source which results in spreading out widely. Since the limited resources in many developed areas, building-integrated photovoltaics (BIPV) has become the objective of solar power development in urban areas. However, the development of solar energy in urban areas requires considerations of the complicated environment, such as the impact of adjoining high buildings, trees, and the shadow of the adjoining buildings influencing the rooftop photovoltaic power generation device the most. Therefore, this study employs Building Information Modeling (BIM) and takes the urban environments into account to predict the PV production on roofs. First, considering different occlusion situations, the orientation, spacing, and height difference of the occlusion objects are selected as parameters to simulate the real situation as much as possible. Then, considering the impact of different geographical climates on cities, such as temperature, sunshine duration, etc., the data of different geographical and climatic characteristics to simulate the photovoltaic output is needed. Finally, performing multiple linear regression on the collated data is to build a predictive model.

    目 錄 摘 要.............................................................................................................................i Abstract..........................................................................................................................ii 誌 謝.......................................................................................................................... iii 目 錄...........................................................................................................................iv 圖目錄...........................................................................................................................vi 表目錄..........................................................................................................................vii 緒論..................................................................................................................1 1-1 研究背景與動機............................................................................................. 1 1-2 研究問題與目的............................................................................................. 3 1-3 研究範圍與限制............................................................................................. 4 1-4 研究流程......................................................................................................... 5 1-5 論文結構......................................................................................................... 6 文獻回顧..........................................................................................................7 2-1 光伏組件的發展概況...................................................................................... 7 2-1-1 光伏發電原理...................................................................................... 7 2-1-2 太陽能電池技術.................................................................................. 8 2-1-3 光伏組件的構成及基本特性.............................................................11 2-2 光伏組件在營建工程的應用....................................................................... 12 2-2-1 BAPV...................................................................................................13 2-2-2 BIPV.................................................................................................... 14 2-3 光伏組件分佈設計方法............................................................................... 15 2-3-1 傳統光伏設計方法............................................................................ 15 2-3-2 應用 BIM 優化光伏設計...................................................................19 2-4 文獻評析....................................................................................................... 22 遮擋方位分析................................................................................................23 3-1 方位遮擋對光伏產量影響........................................................................... 23 3-2 遮擋情形分析............................................................................................... 23 3-2-1 單側遮擋............................................................................................. 26 3-2-2 兩側遮擋............................................................................................ 50 3-2-3 三側遮擋............................................................................................ 61 3-3 受遮擋影響的預測模型............................................................................... 70 3-3-1 資料整理............................................................................................. 70 3-3-2 多元線性回歸分析............................................................................. 70 地理氣候影響分析........................................................................................72 4-1 地理氣候對光伏產量影響........................................................................... 72 4-2 同緯度城市測試........................................................................................... 72 4-2-1 月等效日照小時數............................................................................ 72 4-2-2 每月發電量........................................................................................ 75 4-3 受地理氣候影響的預測模型....................................................................... 93 4-3-1 資料整理............................................................................................ 94 v 4-3-2 多元線性回歸分析............................................................................ 94 結論與建議....................................................................................................97 5-1 結論............................................................................................................... 97 5-2 建議............................................................................................................... 99 5-3 貢獻............................................................................................................. 100 參考文獻....................................................................................................................101

    參考文獻 1. 浜上湘路,(2010).腳光あびる太陽光発電, 石油政策, 49(6), 6-13. 2. 百度百科, (2020).太陽能電池組件.https://is.gd/lt16we. 3. 顧菊明,(2012). 固定式光伏陣列組件排列方式的研究, 華電技術, 34(S1) ,89-90. 4. 維基百科, (2021a). 乙烯/醋酸乙烯酯共聚物. https://is.gd/KKrFgC. 5. 維基百科, (2021b). 建築整合太陽能 . https://is.gd/7DtJn3. 6. 金井升, 舒碧芬, 沈輝, 李軍勇, 陳美園,(2008).單晶矽太陽電池的溫度和光強特性, 材料研究與應用,2(4),498-502. 7. 張立文, 張聚偉, 田葳, 張曉紅,(2010). 太陽能光伏發電技術及其應用, 應用能源技 術, 4, 4-8. 8. 張竹慧, (2009). 太陽能電池組件的設計及選用, 中國新技術產品, 7, 4. 9. 日本太陽光發電協會(2004). 太陽能光伏發電系統的設計與施工. 北京: 科學出版 社. 10. 楊剛, 陳鳴, 陳卓武,(2008). 固定式光伏陣列最佳傾角的 CAD 計算方法, 中山大學 學報: 自然科學版, 47( S2) , 165-169. 11. 楊金煥, (1992). 固定式光伏方陣最佳傾角的分析, 太陽能學報, 13(1), 86-92. 12. 丸川知雄,(2010).シャ-プ vs サンテツク vs ファ-ストソ-ラ,エコノミスト, 88(19), 81-83. 13. 王寶華, 李霞, 丁世磊, 嚴曉宇, 賈豔剛, (2011). 光伏陣列上太陽輻照量計算及最佳 安裝傾角設計, 新能源與綠色建築, 10, 43-45. 14. 王兆宇, 艾芊, 萬振東, (2010). 光伏建築一體化系統中陰影遮蔽問題的研究, 華東 電力, 11, 1785-1789.
    102 15. 於靜, 車俊鐵, 張吉月, (2008).太陽能發電技術綜述,世界科技研究與發展, 30(1), 56-59. 16. Azhar, S. (2011). Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadership and Management in Engineering, 11(3), 241–252. 17. Fraunhofer Institute for Solar Energy Systems, ISE. (2016) PHOTOVOLTAICS REPORT. Freiburg: Retrieved November 23, 2020. from https://reurl.cc/14WZkD. 18. Green, M., Dunlop, E., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2020). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications. 29(1),1-13. 19. International Energy Agency, IEA. (2020). Renewables 2020. Retrieved November 30, 2020. from https://www.iea.org/reports/renewables-2020. 20. Kuo, H.-J., Hsieh, S.-H., Guo, R.-C., & Chan, C.-C. (2016). A verification study for energy analysis of BIPV buildings with BIM. Energy and Buildings, 130, 676–691. 21. Ning, G., Junnan, L., Yansong, D., Zhifeng, Q., Qingshan, J., Weihua, G., & Geert, D. (2017). BIM-based PV system optimization and deployment. Energy and Buildings, 150, 13–22. 22. Salimzadeh, N., Vahdatikhaki, F., & Hammad, A. (2018). BIM-based surface-specific solar simulation of buildings, ISARC. 23. Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. Renewable and Sustainable Energy Reviews, 74, 590–601. 24. Wang, W., Liu, Y., Wu, X., Xu, Y., Yu, W., Zhao, C., & Zhong, Y. (2016). Environmental assessments and economic performance of BAPV and BIPV systems in Shanghai. Energy and Buildings, 130, 98–106.

    QR CODE
    :::