跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥華
Yan-Hua Chen
論文名稱: 鉀摻雜於SrCe0.95Y0.05O3之導電性與化學穩定性之研究
Electrical Conductivity and Chemical Stability of Potassium Doped SrCe0.95Y0.05O3
指導教授: 李雄
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 55
中文關鍵詞: 鈣鈦礦結構導電性化學穩定性
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討不同鉀摻雜濃度對鍶鈰釔氧化物(Sr1-xKxCe0.95Y0.05O3, x=0, 0.025, 0.05)導電率與化學穩定性的影響。利用固態反應法製備混合質子-電子導體之Sr1-xKxCe0.95Y0.05O3鈣鈦礦結構,利用X光粉末繞射儀(XRD)分析材料結構與相鑑定,微結構使用場發掃描式電子顯微鏡(FE-SEM)來做觀察。兩點式電阻量測法量測材料在550℃~900℃之乾氫氣、濕氫氣與大氣氣氛下之導電性,並透過Arrhenius方程式計算其活化能;化學穩定性則在CO2氣氛處理下進行。XRD結果顯示,經1250°C煆燒12小時後可獲得單一鈣鈦礦結構,並無其他雜相生成。在導電率方面,所有氣氛下鍶鈰釔氧化物導電率均隨著鉀摻雜濃度增加而提升。在CO2化學穩定性實驗中,材料化學穩定性隨鉀摻雜含量增加而下降。


    The effect of Potassium doped in SrCe0.95Y0.05O3 on conductivity and chemical stability were investigated in this study. Sr1-xKxCe0.95Y0.05O3, (x=0, 0.05, 0.1, 0.15) was prepared by solid state reaction. The crystal structure, phase and microstructures were identified using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM). Electrical conductivity were measured in dry, moist hydrogen and air at 550℃ to 900℃ by two-point probe method. The activation energy was calculated by Arrhenius equation. Chemical stability were examined under CO2 atmosphere. Preliminary results from XRD showed pure perovskite structure and no detectable impurity phases when powders were calcined at 1250℃ for 12 hours. The electrical conductivity increased as concentration of doped Y increased. The chemical stability under CO2 was lose significantly as more Y was doped into strontium cerates.

    目 錄 摘 要................................................I Abstract............................................II 目 錄...............................................III 第一章 前 言..........................................1 第二章 文獻回顧........................................2 2-1鈣鈦礦結構 (Perovskite)............................2 2-2 燃料電池之簡介.....................................2 2-1-1 電解質材料......................................5 2-3 研究動機..........................................8 第三章 實驗方法與設備...................................14 3-1 實驗流程..........................................14 3-2 實驗設備..........................................14 3-3 粉體及試片製備 .....................................15 3-3-1 粉體製備-固態反應法 (Solid State Reaction, SSR)...15 3-3-2 胚片製作(壓錠燒結)................................15 3-4材料特性分析........................................16 3-4-1 X光晶體結構分析.................................16 3-4-2 SEM表面型態觀察.................................16 3-4-3 孔隙率分析.......................................16 3-5化學穩定性分析.......................................17 3-6 電導率量測.........................................17 第四章 實驗結果與討論....................................25 4-1 XRD分析...........................................25 4-2 SEM表面型態分析....................................26 4-3 導電率分析.........................................27 4-3-1大氣氣氛下之導電率.................................28 4-3-2氫氣氣氛下之導電率.................................28 4-4 化學穩定性分析.....................................30 第五章 結論............................................41 參考文獻...............................................42

    [1] W.R. Grove, "On the Gas Voltaic Battery. Voltaic Action of Phosphorus, Sulphur and Hydrocarbons", Philosophical Transactions of the Royal Society of London, Vol. 135, pp.351-361, (1845).
    [2] 本間琢也, 圖解燃料電池百科, 全華科技圖書, 2004.
    [3] 黃鎮江, 燃料電池, 滄海書局, 2008.
    [4] A.B. Stambouli, E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy", Renewable and Sustainable Energy Reviews, Vol. 6, pp.433-455, (2002).
    [5] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production", Solid State Ionics, Vol. 3–4, pp.359-363, (1981).
    [6] H. Uchida, H. Yoshikawa, H. Iwahara, "Formation of protons in SrCeO3-based proton conducting oxides. Part I. Gas evolution and absorption in doped SrCeO3 at high temperature", Solid State Ionics, Vol. 34, pp.103-110, (1989).
    [7] T. Hibino, K. Mizutani, T. Yajima, H. Iwahara, "Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method", Solid State Ionics, Vol. 57, pp.303-306, (1992).
    [8] T. Yajima, H. Suzuki, T. Yogo, H. Iwahara, "Protonic conduction in SrZrO3-based oxides", Solid State Ionics, Vol. 51, pp.101-107, (1992).
    [9] M. Cai, S. Liu, K. Efimov, J. Caro, A. Feldhoff, H. Wang, "Preparation and hydrogen permeation of BaCe0.95Nd0.05O3−δ membranes", Journal of Membrane Science, Vol. 343, pp.90-96, (2009).
    [10] S.D. Flint, R.C.T. Slade, "Variations in ionic conductivity of calcium-doped barium cerate ceramic electrolytes in different atmospheres", Solid State Ionics, Vol. 97, pp.457-464, (1997).
    [11] X. Wei, Y.S. Lin, "Protonic and electronic conductivities of terbium doped strontium cerates", Solid State Ionics, Vol. 178, pp.1804-1810, (2008).
    [12] X. Qi, Y.S. Lin, "Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes", Solid State Ionics, Vol. 130, pp.149-156, (2000).
    [13] A. Mineshige, S. Okada, M. Kobune, T. Yazawa, "Raman study on defect structure of high-temperature protonic conducting ceramics", Solid State Ionics, Vol. 177, pp.2443-2445, (2006).
    [14] R.J. Phillips, N. Bonanos, F.W. Poulsen, E.O. Ahlgren, "Structural and electrical characterisation of SrCe1−xYxOξ", Solid State Ionics, Vol. 125, pp.389-395, (1999).
    [15] Y. Li, R. Gemmen, X. Liu, "Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes", J. Power Sources, Vol. 195, pp.3345-3358, (2010).
    [16] W. Zhou, R. Ran, Z. Shao, "Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review", J. Power Sources, Vol. 192, pp.231-246, (2009).
    [17] R.J. Gorte, J.M. Vohs, "Nanostructured anodes for solid oxide fuel cells", Current Opinion in Colloid & Interface Science, Vol. 14, pp.236-244, (2009).
    [18] M.M. Elbaccouch, S. Shukla, N. Mohajeri, S. Seal, A. T Raissi, "Microstructural analysis of doped-strontium cerate thin film membranes fabricated via polymer precursor technique", Solid State Ionics, Vol. 178, pp.19-28, (2007).
    [19] P.I. Dahl, R. Haugsrud, H.L. Lein, T. Grande, T. Norby, M.-A. Einarsrud, "Synthesis, densification and electrical properties of strontium cerate ceramics", J. Eur. Ceram. Soc., Vol. 27, pp.4461-4471, (2007).
    [20] K.D. Kreuer, "Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides", Solid State Ionics, Vol. 125, pp.285-302, (1999).
    [21] T.k. Oh, H. Yoon, E.D. Wachsman, "Effect of Eu dopant concentration in SrCeO3 on ambipolar conductivity", Solid State Ionics, Vol. 180, pp.1233-1239, (2009).
    [22] J. LÜ, L. Wang, L. Fan, Y. Li, L. Dai, H. Guo, "Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres", Journal of Rare Earths, Vol. 26, pp.505-510, (2008).

    QR CODE
    :::