跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余業緯
Ye-Wei Yu
論文名稱: 應用體積全像光學元件之布拉格窗於點對點成像之研究
The study of point-to-point imaging based on Bragg windows of volume holographic optical elements
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 體積全像體積全像光學元件點對點成像布拉格窗
外文關鍵詞: Bragg windows, volume holography, point-to-point imaging, volume holographic optical element
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了使用體積全相光學元件來作為成像之元件,我們探討球面波在布拉格簡併方向上的繞射效應,並且提出了一個新穎的體積全像光學元件,藉由這個光學元件的布拉格窗可以達到一維的線性成像,我們分別以理論及實驗驗證它的線性放大率。最後,我們分別探討此架構之布拉格窗其物理來源及數學驗證,得出的結果與電腦模擬相符合。


    目錄 摘要 I 目錄 Ⅱ 圖索引 Ⅳ 表索引 Ⅴ 第一章 緒論 1 1.1 全像光學之歷史發展 1 1.2 全像術簡介 3 1.3 體積全像光學元件 6 1.4 目前已發展之相關理論 7 第二章 理論介紹 9 2.1 布拉格條件 9 2.2 耦合理論 11 2.2-1 布拉格匹配 18 2.2-2 布拉格不匹配 20 2.3 相位疊加法 22 2.4 數值模擬方法 26 2.4-1 取樣點數目之討論 28 2.4-2 近軸近似下忽略折射率時的等效距離 32 第三章 體積全相光學元件之一維成像 33 3.1 布拉格簡併 33 3.1-1 球面波與布拉格簡併 35 3.2 球面波之一維線性成像 37 3.2-1 一維線性成像之定性分析 38 3.2-2 一維線性成像之解析解 40 3.3 線性放大率之實驗驗證 44 第四章 布拉格窗 50 4.1 布拉格窗之物理敘述 50 4.2 布拉格窗的數學推導 53 結論 57 參考文獻 58 中英文名詞對照表 60

    參考文獻
    1.D.Gabor, ”A new Microscopic principle,” Nature 161,777(1948).
    2.P. J. van Heerden, "Theory of optical information storage in solids," Appl. Opt. 2, 393 (1963).
    3.Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J.J. Levinstein and K. Nassau, "Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3," Appl. Phys. Lett. 9, 72 (1966).
    4.N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, "Holographic storage in electro-optic crystals. I. Steady state," Ferroelectrics 22, 949 (1979).
    5.J. Feinberg, "Self-pumped, continuous-wave phase-conjugator using internal reflection," Opt. Lett. 7, 486 (1982).
    6.B. N. A. Vainos and M. C. Gower, "High-fidelity phase conjugation and real-time orthoscopic three-dimensional image projection in BaTiO3," J. Opt. Soc. Am. B. 8, 2355 (1991)
    7.C. Huitian Wang, Nobukazu Yoshikawa, Shin Yoshikado, Tadashi Aruga, "Mutually pumped phase conjugator with a rainbow configuration in BaTiO3:Ce crystal using nanosecond pulses," Opt. Lett. 21, 561(1996).
    8.N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, "Holographic storage in electro-optic crystals. II. Beam coupling and light amplification," Ferroelectrics 22, 961 (1979).
    9.F. H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915 (1993).
    10.D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, "Holographic storage using shift multiplexing," Opt. Lett. 20, 782 (1995).
    11.G. A. Rakuljic, V. Leyva, and A. Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Opt. Lett. 17, 1471 (1992).
    12.G. Barbastathis, M. Levene, and D. Psaltis, "Shift multiplexing with spherical reference waves," Appl. Opt. 35, 2403 (1996).
    13.C. Denz, G. Pauliat, and G. Roosen, "Volume hologram multiplexing using a deterministic phase encoding method," Opt. Commun. 85, 171 (1991).
    14.C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang and M. W. Chang, "Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass," Opt. Quantum Electron. 28, 1509 (1996).
    15.C. C. Sun, W. C. Su, Y. L. Lin, S. P. Yeh, and B. Wang, "3-dimensional random phase encryption in a volume hologram and the applications," Proc. SPIE 4110, 139 (2000).
    16.D. Generic Volodin, "A polymeric optical pattern-recognition system for security verification," Nature 383, 58 (1996).
    17.F.T.S. Yu, S. Wu, A. Mayers and S. Rajan, "Wavelength multiplexed reflection matched spatial filters using LiNbO3," Opt. Commun. 81, 343 (1991).
    18.S. F. Chen, C. S. Wu, and C. C. Sun, "Design for a high dense wavelength division multiplexer based on volume holographic gratings," Optical Engineering 43, 2028 (2004). [SCI]
    19.George Barbastathis, Michal Balberg, "Confocal microscopy with a volume holographic filter," Opt. Lett. 24, 811 (1999).
    20.C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, "Spatial filtering of three-dimensional objects based on volume holography," Opt. Eng.(Letters) 42, 2788 (2003).
    21.C. C. Sun and P. P. Banerjee, "volume holographic optical elements," Optical Engineering 43, 1957 (2004).
    22.W.R.Klein,”Theoretical Efficiency of Bragg Devices,”Proc. IEEE 54, 803(1966)
    23.H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    24.P. Yeh, Introduction to Photorefractive NonlinearOptics (Wiley, New York, 1993).
    25.C. C. Sun, M. S. Tsaur, B. Wang, W. G. Su, and A. E. T.Chiou,” Two-Dimensional Shifting Tolerance of a Volume-Holographic Correlator ,”Appl. Opt. 38, 4316 (1999).
    26.G. Barbastathis and D. Psaltis, Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox,eds. (Springer, New York, 2000).
    27.A. Sinha, G. Barbastathis, W. Liu, and D. Psaltis, “Imaging using volume holograms,”Opt.Eng. (Bellingham) 43, 1959 (2004).
    28.L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imagine spectral device base on multiple volume holographic gratings,“Opt.Eng. (Bellingham) 43, 2009 (2004).
    29.F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J.Steckman,”Volume holographic grating-based continuously tunable optical filter,” Opt. Eng. (Bellingham) 43, 2017 (2004).
    30.C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y.Chang, Microwave,” A novel algorithm for high sensitivity in measuring surface,” Opt. Technol. Lett. 34, 319 (2002).
    31.C. C. Sun, "A simplified model for diffraction analysis of volume holograms," Optical Engineering (Letters) 42, 1184 (2003).
    32.C.C.Sun, T.C. Teng, Y.W.Yu “One-dimensional optical imaging with a volume holographic optical element,” Opt. Let. 30, 1132 (2005)

    QR CODE
    :::