| 研究生: |
嚴偉新 Wei-Sin Yan |
|---|---|
| 論文名稱: |
東亞地區降水年際變化之研究 |
| 指導教授: |
曾仁佑
Ren-Yow Tzeng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 聖嬰/南方震盪 |
| 外文關鍵詞: | ENSO(El Nino / Southern Oscillation) |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究想要探討,在ENSO 事件影響下,東亞地區綜觀尺度擾動之年際變化,以及這些擾動和影響此區的降水特性和動力原因。本研究利用合成的環流場,排除ENSO 以外的作用力,更能了解ENSO 事件時東亞地區環流場的變化過程。
暖事件時上對流層西伯利亞脊減弱,地面西伯利亞高壓跟著減弱,中國大陸下對流層出現壓力負距平。另外上對流層阿拉斯加脊減弱,加上東亞主槽加強,地面阿留申低壓會加強並往東偏移,西太平洋下對流層出現壓力正距平。中國大陸下對流層的低壓距平以及西太平洋下對流層的高壓距平,會為東亞沿岸帶來暖溼的西南風距平。在擾動場中,上對流層的擾動正距平沿著季風路徑往東亞沿岸、東亞主槽往華南延伸以及西太平洋20oN 上方的高壓脊往東偏移,皆有利於東亞沿岸地面的擾動增強,加上暖濕空氣,東亞沿岸降水機會就會增加。
冷事件時,上對流層的東亞主槽會減弱並往西南偏移,西伯利亞脊以及阿拉斯加脊都會增強。下對流層的西伯利亞高壓受到上對流層西伯利亞脊增強的影響,也有增強的現象,中國大陸下對流層出現壓力正距平。受到上對流層東亞主槽以及阿拉斯加脊的影響,下對流層的阿留申低壓減弱,西太平洋下對流層出現壓力負距平。由於中國大陸下對流層的壓力正距平以及西太平洋下對流層的壓力負距平,會為東亞沿岸地面帶來乾冷的東北風距平。在擾動場方面,上對流層的擾動負距平,沿著季風路徑往東南傳播,加上西太平洋20oN 上對流層的高壓脊往西偏移,不利於地面擾動發展。東亞沿岸下對流層擾動減弱,乾冷的東北風增強,東亞沿岸降水的機會減少。
This study investigates the interannual variation of synoptic scale disturbance, and its influence on the characteristic of precipitation. This study utilizes a composite method, which isolates the affect of ENSO, to
understand the evolving process of circulation field in Eastern Asia under theinfluences of ENSO.
In the ENSO warm phase, the Siberian ridge in upper troposphere weakens but the Siberian high in lower troposphere follows to weaken. There is a negative anomaly of surface pressure around the Siberian high area including China. The Alaskan ridge in upper troposphere also weakens but the Eastern Asian main trough in upper troposphere strengthens during the ENSO warm phase, so that the Aleutian low shifts to the east. There is a positive anomaly of pressure in lower troposphere over west Pacific Ocean. In lower troposphere, the negative anomaly of pressure in China and the positive anomaly of pressure in west Pacific Ocean bring warm-wet air into Eastern Asia. On the other hand, a positive anomaly of synoptic scale disturbances in the upper troposphere propagates to Eastern Asia along the monsoon route. At the same time, the ridge over 20oN in upper troposphere in west Pacific Ocean moves to the east. It is advantageous the synoptic scale disturbance to increase in lower troposphere in Eastern Asia. Because of more synoptic scale disturbances and warm-wet air, the precipitation will increase in Eastern Asia.
In the ENSO cold phase, because the Siberian ridge in upper troposphere strengthens, the Siberian high strengthens in lower troposphere. There is a positive anomaly of pressure in lower troposphere around the Siberian high area including China. In upper troposphere at the same time, the Eastern Asian main trough shifts to southwest, and the Alaskan ridge strengthens. Aleutian low in lower troposphere shifts to southwest, so there is a negative anomaly of pressure in lower troposphere in west Pacific Ocean. In lower troposphere, the positive anomaly of pressure in China and the negative anomaly of pressure in west Pacific Ocean bring cold-dry air into Eastern Asia. For disturbance field, the ridge over 20oN in west Pacific in upper troposphere extends to west and it is advantageous the synoptic scale disturbances to decrease in lower troposphere in Eastern Asia. Because of less synoptic scale disturbances and cold-dry air in lower troposphere, the precipitation will decrease in Eastern Asia.
李思瑩,2005:全球與區域水氣收支初步分析。國立中央大學大氣物理研究所碩士論文。
鄭凱天,2005:東亞大氣年際變化之研究與模擬。國立中央大學大氣物理研究所碩士論文。
Berlage, H. P., 1966: The Southern Oscillation and world weather. K. Ned. Meteor.Inst. Meded. Verh., 88, 135–152.
Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820–829.
——, 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.
Chen, T.-C., M.-C. Yeng, and S.-P. Weng, 2000: Interaction between summer monsoons in East Asia and the South China Sea: Intraseasonal monsoon modes. J. Atmos. Sci., 57, 1373-1392.
Chen, C.-S., and Y.-L. Chen, 2003: The Rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. R. Met. Soc., 106, 447-462.
Gong D. Y., J. H. Zhu, and S. W. Wang, 2002: Significant relationship between spring AO and the summer rainfall along the Yangtze River. Chinese Science Bulletin, 47(11), 948-951.
Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661– 1671.
Kalnay, E., M. Kanamitsu, and W. E. Baker, 1990: Global numerical weather prediction at the National Meteorological Center. Bull. Amer. Meteor. Soc., 36 71, 1410–1428.
Kanamitsu, M., 1985: A study of the predictability of the ECMWF operational forecast model in the tropics. J. Meteor. Soc. Japan, 63, 779–804.
Kung, E. C., and P. H. Chan, 1981: Energetics characteristics of the Asian winter monsoon in the source region. Mon. Wea. Rev., 109, 854-870.
Landis, R. C., 1994: Comments on “Forecasting in meteorology.”. Bull. Amer. Meteor. Soc., 75, 823–827.
Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 2407–2423.
Lau, N.-C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J. Climate, 13, 4287–4309.
Lau, K.-M., and H. Weng, 2002: Recurrent teleconnection patterns linking summertime precipitation variability over East Asia and North America. J. Meteor. Soc. Japan, 80, 1309–1324.
Lorenz, E. N., 1951: Seasonal and irregular variations of the northern hemisphere sea-level pressure profile. J. Meteorol, 8, 52-59.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
Mantua, N.J. and S.R. Hare, Y. Zhang, J.M. Wallace, and R.C. Francis 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069-1079.
Martin, J. E., R. D. Grauman, and N. Marsili, 2001: Surface cyclolysis in the North Pacific Ocean. Part I: A synoptic climatology. Mon. Wea. Rev., 129, 748–765.
37
Meehl, G. A., 1994: Coupled ocean-atmosphere-land processes and south Asian Mon-soon Variability. Science, 265, 263-267.
Molnar, P., and K. A. Emanuel, 1999: Temperature profiles in radiative–convective equilibrium above surfaces at different heights. J. Geophys. Res., 104, 24 265–24 271.
Otkin, J. A., and J. E. Martin, 2004a: A synoptic climatology of the subtropical Kona storm. Mon. Wea. Rev., 132, 1502–1517.
——, and ——, 2004b: The large-scale modulation of subtropical cyclogenesis in the central and eastern Pacific Ocean. Mon. Wea. Rev., 132, 1813–1828.
Reynolds, C. A., P. J. Webster, and E. Kalnay, 1994: Random error growth in NMC global forecasts. Mon. Wea. Rev., 122, 1281–1305.
Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation.
J. Climate, 10, 453–464.
——, 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33, 1–23.
Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the south Asian monsoons. J. Climate, 18, 2067-2079.
Shen, S. and K.-M. Lau, 1995: Biennial oscillation associated with the east Asian monsoon and tropical sea surface temperature. J. Meteor. Soc. Japan, 73, 105-124.
Shuman, F. G., 1989: History of numerical weather prediction at the National Meteorological Center. Wea. Forecasting., 4, 286–296.
Simmons A.J. and J.K. Gibson, 2000: The ERA-40 Project Plan. ERA-40 Project 38 Report Series No.1, ECMWF, Shinfield Park, Reading RG2 9AX, UK., 63 pp.
Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, No. 9, 1297-1300.
Troup, A. J., 1965: The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91, 490–506.
Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 53–84.
——, and ——, 1937: World weather VI. Mem. Roy. Meteor. Soc., 4, 119–139.
Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks, and baroclinic waveguides. J. Atmos. Sci., 45, 439–462.
Wang, B., W. Renguang, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536.
Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convective nomalies. Meteorol. Atmos. Phys., 44, 43-61.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.
Xiaofeng, G., A. G. Barnston, and M. N. Ward., 2003: The Effect of Spatial Aggregation on the Skill of Seasonal Precipitation Forecasts. J. Climate, 16, 3059–3071.
Zhang, X.-D., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 2300–2317.
Zhu, X., J. Sun, Z. Liu, and J. E. Martin, 2007: A synoptic analysis of the interannual variability of winter cyclone activity in the Aleutian low 39 region. J. Climate, 20, 1523-1538.