跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄧名杉
Ming-Sang Deng
論文名稱: 模糊車牌字元預測使用超解析度影像重建技術
Blur License Plate Character Prediction Using Super-Resolution Based Image Reconstruction Technique
指導教授: 范國清
Kuo-Chin Fan
莊啟宏
Chi-Hung Chuang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 車牌切割車牌辨識超解析度影像還原
外文關鍵詞: Vehicle license plate segmentation, vehicle license plate recognition, super-resolution, image reconstruction
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 車牌影像的分析與應用是長久以來電腦視覺領域中一個重要的課題,在近年來,以此技術為基礎的應用正在蓬勃發展當中。舉例來說:道路監控、贓車追蹤、出入口監測等等,都是典型的應用。本篇論文除了一般狀況的車牌影像之外,更特別專注於透過超解析度技術來處理模糊車牌的案例。
    本篇論文主要目標是設計一個能夠克服低解析度、光影變化,以及因為車距過遠所造成的車牌過小的狀況之影像還原系統。利用LBP特徵與RBF類神經網路進行特徵轉換,搭配影像分析演算法來進行模糊車牌的分析,接著利用兩階段式的影像還原,一步步將低解析影像還原成高解析影像,而每一次的還原都會產生一個新的影像,每一個新影像都會進行分析與投票。最終再依據投票結果進行影像重建的步驟。這個做法的目的在於透過一次又一次的分析與還原的過程中,強化原本因為模糊而弱化的影像特徵。
    在實驗方面分成三大部分。第一部分採用模糊但肉眼可辨識的車牌影像,其目標為還原出正確且易讀的車牌。第二與第三部分則採用模糊且肉眼無法辨識的車牌影像,並透過「候選名單」的排名,來進行準確度的分析。該候選名單可以用來做為模糊車牌解答之參考依據,藉以降低模糊車牌比對上的搜尋範圍。實驗結果顯示,本論文所提出的方法對於模糊車牌有很高的還原成功率,而即便在非常模糊以至於肉眼無法分辨的車牌影像上,仍然可以有很好的辨識成效。


    The research on vehicle license plate is an important issue in computer vision. In recent years, applications based on this technology are getting popular. For example, entrance monitoring system, road surveillance, suspicious vehicle investigation…etc. In our work, we are not only dealing with the normal case but also focusing on the blurred plate images using super-resolution technique. The purpose of this thesis is to design a vehicle license plate analysis and image reconstruction system that can overcome the following cases: blurred images, images with variation illumination intensity, and tiny target images.
    In this thesis, we adopt LBP as image feature and RBF neural network to perform feature translation in the first stage. After that, an algorithm for analyzing the image and performing the image reconstruction is proposed in the second stage. In image reconstruction stage, two-layer architecture is applied. In the first step, image reconstruction is performed recursively to obtain better reconstruction result. A new image will be generated each time and each new image will go through analysis and voting procedure recursively. In the second step, image reconstruction is further manipulated according to the voting result. The purpose of image reconstruction is to intensify the weak clue in the blurred image recursively.
    Three different experiments were conducted to verify the validity of our proposed method. The images in the first experiment are blurred but can be identified by human. We can apply the proposed method to reconstruct the original blurred images into clear and correct license plate images. The images of the second and third experiments are very blurred and cannot be identified by human. Here, we utilize the candidate ranking list for analyzing the accuracy. This list can help police to reduce the search space when performing the blurred license plate image matching for criminal investigation.

    目錄 摘要 i 致謝 iv 目錄 v 圖目錄 vii 表目錄 viii 演算法目錄 viii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 系統架構 3 1.4 論文架構 4 第二章 文獻探討 5 2.1 車牌偵測 5 (1) 顏色為基礎的偵測(Color-based) 6 (2) 邊緣特徵為基礎的偵測(Edge-based) 6 (3) 字元特徵為基礎的偵測(Texture-based) 6 (4) 其他 7 2.2字元分割 7 (1) 利用像素的連通性 8 (2) 利用投影分析 8 (3) 利用預備知識(Prior Knowledge) 8 (4) 利用多特徵之結合 8 2.3 字元辨識 9 (1) 使用原始數據 10 (2)使用特徵擷取 10 2.4 超解析度技術 10 (1) 頻率域分析法(Frequency Domain) 11 (2) 確定性正則化法(Deterministic Regularization) 11 (3)機率統計法(Stochastic Methods) 11 (4)以學習為基礎法(Learning-based Methods) 11 2.5 模糊車牌探討 12 第三章 相關研究 13 3.1 車牌偵測 13 3.1.1 自適應增強演算法(Adaboost Algorithm) 13 3.1.2 單一迴積特徵 16 3.1.3 層級分類器(Cascade classifier) 16 3.2 字元辨識之特徵-LBP(Local Binary Pattern) 17 3.2.1 LBP(Local Binary Pattern) 17 3.2.2 統一模式(uniform patterns) 18 3.3 RBF類神經網路 18 3.4 基因演算法 19 第四章 系統流程與演算法 21 4.1 系統流程介紹 21 4.2 字元切割 22 4.2.1 車牌ROI擷取 23 4.2.2 依車牌規則的切割法 23 (1)第一種類型切割法 24 (2)第二種類型切割法 24 4.3 特徵擷取與分析 24 4.3.1 特徵擷取 25 4.3.2 類神經網路的訓練與應用 26 (1)資料收集 26 (2)訓練 27 4.3.3 影像分析 29 4.4 影像重建 29 4.4.1 概念闡述 29 4.4.2 第一階段影像還原 32 (1)分配權重 32 (2)計算區塊相似度 32 (3)影像還原 32 (4)影像分析與投票機制 33 4.4.3 第二階段影像還原 33 (1)高清影像還原 34 (2)評估準則 34 第五章 實驗結果與分析 36 第六章 結論與未來研究方向 53 參考文獻 55

    [1] W.Zhou, H.Li, Y.Lu and Q.Tian. "Principal Visual Word Discovery for Automatic License Plate Detection," Image Processing, IEEE Transactions on, vol. 21,no. 9, pp. 4269-4279, 2012.
    [2] Y.Quan. J.Bai. Tian, and N.Liu."A vehicle license plate recognition system based on fixed color collocation," Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, vol. 9, pp. 5394-5397.
    [3] M.S.Sarfraz, A.Shahzad Muhammad, A.Elahi, M.Fraz, I.Zafar, E.A.Edirisinghe. "Real-time automatic license plate recognition for CCTV forensic applications," Journal of Real-Time Image Processing, vol. 8 , pp. 285-295, 2013.
    [4] Reza Azad Hamid, Reza Shayegh. "New Method for Optimization of License Plate Recognition system with Use of Edge Detection and Connected Component," Computer and Knowledge Engineering (ICCKE), 2013 3th International Conference on.
    [5] S. Hamidreza Kasaei, S. Mohammadreza Kasaei, S. Alireza Kasaei. "New Morphology-Based Method for Robust Iranian Car Plate Detection and Recognition," International Journal of Computer Theory and Engineering, vol. 2, No. 2, pp. 264-268, April, 2010.
    [6] H. Samet and M. Tamminen, "Efficient Component Labeling of Images of Arbitrary Dimension Represented by Linear Bintrees," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10 , pp. 579-586. 1988.
    [7] Nicolás Fernando, Gazcón Carlos, Iván Chesñevar, Silvia Mabel Castro. "Automatic vehicle identification for Argentinean license plates using intelligent template matching," Pattern Recognition Letters, vol. 33, pp. 1066-1074, July,2012.
    [8] K. Lin, H. Tang, and T. S. Huang, "Robust license plate detection using image saliency," in Proc. Int. Conf. Pattern Recognition, Sep. 2010, pp.3945–3948.
    [9] Y. Lee, T. Song, B. Ku, S. Jeon, D. K. Han, and H. Ko, "License plate detection using local structure patterns," Advanced Video and Signal Based Surveillance (AVSS) , 2010.
    [10] W. Wang, Q. Jiang, X. Zhou, and W. Wan, "Car license plate detection based on MSER," Consumer Electronics, Communications and Networks (CECNet) , 2011 International Conference on.
    [11] J. Matas, O. Chum, M. Urban, and T. Pajdla, "Robust wide baseline stereo from maximally stable extremal regions, " Image and Vision Computing , vol. 22, no. 10, pp. 761–767, 2004.
    [12] W. T. Ho, H. W. Lim, and Y. H. Tay, "Two-stage license plate detection using gentle Adaboost and SIFT-SVM," Intelligent Information and Database Systems International Conference on, 2009
    [13] B.-F. Wu, S.-P. Lin, and C.-C. Chiu, "Extracting characters from real vehicle license plates out-of-doors, " IET Computer Vision, vol. 1, no. 1, pp. 2–10, 2007.
    [14] B. Shan, "Vehicle license plate recognition based on text-line construction and multilevel RBF neural network, " Journal of Computers , vol. 6, no. 2, pp. 246-253, Feb,2011.
    [15] S.Singh, Chhabada, Rahul, Singh, Atul Negi. "HEURISTICS FOR LICENSE PLATE DETECTION AND EXTRACTION," World Journal of Science and Technology, vol. 1, no. 12, 2011.
    [16] J.-K. Chang,Seungteak Ryoo,Heuiseok. Lim. "Real-time vehicle tracking mechanism with license plate recognition from road images," Journal of Supercomputing , vol. 65, no. 1 ,pp. 353-364. July, 2013.
    [17] D.-J. Kang, "Dynamic programming-based method for extraction of license plate numbers of speeding vehicle on the highway," International Journal of Automotive Technology, vol. 10 , no. 2 , pp. 205-210, April, 2009.
    [18] Shan Du, Mahmoud Ibrahim, Mohamed Shehata, and Wael Badawy, " Automatic License Plate Recognition (ALPR):A State-of-the-Art Review." Circuits and Systems for Video Technology, IEEE Transaction on, vol. 23, no. 2, Feb, 2013.
    [19] S. Tang and W. Li, "Number and letter character recognition of vehicle license plate based on edge Hausdorff distance," Parallel and Distributed Computing, Applications and Technologies (PDCAT) , Sixth International Conference on, 2005.
    [20] M. Sarfraz, M. J. Ahmed, and S. A. Ghazi, "Saudi Arabian license plate recognition system," Geometric Modeling and Graphics International Conference on, 2003.
    [21] P. L. Hsieh, Y. M. Liang and H. Y. Liao, "Recognition of blurred license plate images." In Information Forensics and Security (WIFS), IEEE International Workshop on, pp. 1-6, 2010.
    [22] H. E. Kocer and K. K. Cevik, "Artificial neural networks based vehicle license plate recognition," Procedia Computer Science, vol. 3, pp. 1033–1037, 2011.
    [23] M.-K. Kim and Y.-B. Kwon, "Recognition of gray character using Gabor filters, " Information Fusion, 2002, Proceedings of the Fifth International Conference on, vol. 1, pp.419-424, 2002.
    [24] J. B. Jiao, Q. X. Ye, and Q. M. Huang, "A configurable method for multi-style license plate recognition," Pattern Recognition, vol. 42, no. 3, pp. 358–369, 2009.
    [25] S.P. Kim, N.K. Bose, and H.M. Valenzuela, "Recursive reconstruction of high resolution image from noisy undersampled multiframes," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 38, no. 6, 1990.
    [26] S.H. Rhee and M.G. Kang, "Discrete cosine transform based regularized high-resolution image reconstruction algorithm," Optical Engineering, vol. 38, no. 8, pp. 1348-1356, Aug. 1999.
    [27] N.K. Bose, S. Lertrattanapanich, and J. Koo, "Advances in superresolution using L-curve, " in Proc. Int. Symp. Circuits and Systems, vol. 2, 2001, pp. 433-436.
    [28] P.C. Hansen, and D. Prost O’Leary, "The use of the L-curve in the regularization of discrete ill-posed problems," SIAM J. Sci. Comput., vol. 14, no. 6, pp. 1487-1503, Nov. 1993.
    [29] Katherine, Donaldson, Myers, Gregory K. "Bayesian super-resolution of text in videowith a text-specific bimodal prior" International Journal on Document Analysis and Recognition 7:159–167(IJDAR),2005.
    [30] Yushuang Tian, Kim-Hui Yap, Yu He. "Vehicle license plate super-resolution using soft learning prior," Multimedia Tools and Applications , vol. 60, no. 3, pp. 519-535, October, 2012.
    [31] Koji Shinomiya, Naoki Takamura, Kazuhiro Fujita. "Discriminating Car License Plate Numbers on Low Resolution Using Moment Characteristics" ITE Transactions on Media Technology and Applications ISSN:2186-7364 VOL.1 nO.4 PAGE.271-277,2013.
    [32] K. Zarei Zefreh, W. van Aarle, K. J. Batenburg, J. Sijbers. "Super-Resolution of License Plate Images using Algebraic Reconstruction Technique" Journal of Image and Graphics, vol. 1, no. 2, June ,2013
    [33] K. V. Suresh, G. Mahesh Kumar, and A. N. Rajagopalan. "Superresolution of License Plates in Real Traffic Videos" Intelligent Transportation Systems, IEEE Transactions on, vol. 8, no. 2, pp.321-331, 2007.
    [34] Ibtisam Y. Mogul, Prof. V. B. Gaikwad, Prof. Ujwala V. Gaikwad. "Restoring Motion Blur from Vehicle License Plates" International Journal of advanced studies in Computer Science and Engineering(IJASCSE), Volume 3, Issue 2, 2014
    [35] S. K. Kang, J. H. Min, and J. K. Paik, "Segmentation-based spatially adaptive motion blur removal and its application to surveillance systems, " International Conference on Image Processing, vol. 1, pp. 245 –248, 2001.
    [36] Freund, Yoav, Schapire, Robert "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting," Computational Learning Theory Lecture Notes in Computer Science, vol.904 , pp. 23-37, 1995.
    [37] C. Garcia and M. Delakis, "Convolutional Face Finder: A Neural Architecture for Fast and Robust Face Detector," Pattern Analysis and Machine Intelligence, IEEE Transaction on, vol. 26, no. 11, 2004.
    [38] P. Viola and M. Jones, "Robust real-time face detection, " International Journal of Computer Vision, vol. 57, no.2, pp. 137–154, 2004.
    [39] Xiaoxuan Chen, Chun Qi. "A super-resolution method for recognition of license plate character using LBP and RBF,"IEEE International Workshop on Machine Learning for Signal Processing, 2011.
    [40] M J. Er, S Q. Wu, J W. Lu, and H L. Toh, " Face recognition with radial basis function (RBF) neural networks," IEEE Transactions on Neural Networks, vol. 13, no. 3, pp. 697–710, 2002.

    QR CODE
    :::