跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭孟杰
Meng-Jie Shiau
論文名稱: 具銻砷化銦鎵披覆層之砷化銦量子點特性研究
Improving Long Wavelength InAs Quantum Dots by an InGaAsSb Overgrown Layer
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 50
中文關鍵詞: 銻砷化銦鎵
外文關鍵詞: InGaAsSb, antimony
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以銻砷化銦鎵做為量子點披覆層,對砷化銦量子點產生的的影響。藉由室溫光激發光譜我們觀察到披覆銻砷化銦鎵的量子點發光波長會產生紅位移的現象,波長可以延伸到1.4 μm以上,並且維持相當好的發光強度。經由掃描式穿透式電子顯微鏡,我們發現紅位移的原因主要來自於量子點大小的變化,銻在此效應所扮演的角色亦一併提出討論。
    除此之外,經過快速熱退火(rapidly thermal annealing)實驗發現,披覆銻砷化銦鎵的量子點有較好的耐熱性,即使在經過20秒750 oC的熱處理之後,仍然可以維持原來的發光特性,遠佳於披覆砷化銦鎵的量子點。因此,我們認為可能是銻化合物抑制了銦原子和鎵原子的互混,但是此假設仍需進一步的研究以釐清。由以上結果可以得知,砷化銦量子點覆蓋銻砷化銦鎵是一個良好的磊晶結構,對長波長量子點光電元件極有助益。


    In this work, the material aspect of InAs quantum dot heterostructures grown on GaAs by molecular beam epitaxy is investigated. With the addition of Sb to an InGaAs overgrown layer, the ground state emission of InAs quantum dots is red-shifted from 1346 nm to 1390 nm at room temperature while maintaining high luminescence intensity. Cross-sectional scanning transmission electron microscopy (STEM) studies indicate that the redshift of emission wavelength could be attributed to the increase of dot size. The average height of the InAs quantum dot with an InGaAsSb overgrown layer is 9.3 nm compared to 8.5 nm for the dots with an InGaAs overgrown layer. The role of Sb in the increase of dot size is proposed.
    The robustness at high temperature for the InAs QDs with an InGaAsSb overgrown layer is also enhanced as evidenced by the rapid thermal annealing experiments in an N2 ambient. The sample with an InGaAsSb overgrown layer survives thermal treatment up to 750 oC for 20 seconds. The mechanism of the suppression of In-Ga intermixing by this Sb-based material is not clear and requires further investigation. In spite of this, the results of this study indicate that InGaAsSb overgrown layer is indeed beneficial for long wavelength InAs quantum dot photonic devices.

    第一章 簡介 1 1.1 量子點簡介 1 1.2 成長在砷化鎵基板之量子點發展近況 3 1.3 研究動機與章節概述 5 第二章 實驗設備與原理 7 2.1 分子束磊晶系統簡介 7 2.2 光激發光譜實驗設備簡介 8 2.3 量子點模擬簡介與原理 10 第三章 砷化銦量子點披覆銻砷化銦鎵磊晶層之光學特性研究 13 3.1 本章簡介 13 3.2 試片製備 14 3.3 量子點光學特性分析 18 3.3 披覆銻砷化銦鎵之量子點發光波長紅位移機制探討 22 3.4 本章總結 34 第四章 快速熱退火對於砷化銦量子點披覆銻砷化銦鎵 之光學特性影響之研究 35 4.1 本章簡介 35 4.2 試片快速熱退火條件 36 4.3. 快速熱退火對於試片發光特性影響 38 4.4 本章結論 44 第五章 結論 46 參考文獻 48

    1. Y. Arakawa, and H. Sakaki, Appl. Phys. Lett. 40,939(1982)
    2. M. Ssada, Y. Miyamoto, and Y. Suematsu, J. Quantum Electron. QE-22,1915(1986)
    3. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe Appl.
    Phys. Lett. 73, 2564(1998)
    4. F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg ,
    Appl. Phys. Lett. 76, 556(2000)
    5. W.-S. Liu, H. L. Chang, Y.-S. Liu, and J.-I. Chyi, J. Appl. Phys. 99,
    114514 (2006)
    6. T.-P. Hsieh, P.-C. Chiu, J.-I. Chyi, N.-T. Yeh , W.-J. Ho, W.-H. Chang
    and T.-M. Hsu, Appl. Phys. Lett. 87, 151903 (2005)
    7.L.H. Li, M. Rossetti, A. Fiore and G. Patriarche, ELECTRONICS
    LETTERS, 42 ,11(2006)
    8.L.Y. Karachinsky, T. Kettler,I.I. Novikov1,Y.M. Shernyakov,N.Y.
    Gordeev1,M.V. Maximov,N. Kryzhanovskay, A. E.Zhukov1, E.S.
    Semenova1, A.P. Vasil''ev, V. M. Ustinov, G. Fiol, M. Kuntz, A.
    Lochmann, O. Schulz, L. Reissmann, K. Posilovic, A. R. Kovsh,S.S.
    Mikhrin, V. A. Shchukin1, N.N. Ledentsov and D. Bimberg Semicond.
    Sci. Technol. 21 ,5 (2006)
    9. J.M. Ripalda, D. Granados, Y. González, A.M. Sánchez and S. I.
    Molina, J.M. García, Appl. Phys. Lett. 87, 202108 (2005)
    10. D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, Appl. Phys.
    Lett., 89, 183124 (2006)
    11 D. Guimard, S. Tsukamoto, M. Nishioka, and Y. Arakawa, Appl. Phys.
    Lett., 89, 083116 (2006)
    12 W.-S. Liu, David M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and
    T.-M. Hsu, Appl. Phys. Lett. 89, 243103 (2006)
    13. M, Yano, H. Yokose, Y. Iwai and M. Inoue, J. Cryst. Growth, 111, 609
    (1991)
    14. N.-T. Yeh, T.-E. Nee, J.-I. Chyi, T. M. Hsu and C. C. Huang, Appl.
    Phys. Lett. 76, 12 (2000)
    15. W.-S. Liu and J.-I. Chyi, J. Appl. Phys., 97, 024312(2005)
    16.. N.N. Ledentsov, V.A. Shchukin, M. Grundmann, N. Kirstaedter,
    J.B.ohre, O. Schmidt, D. Bimberg, V.M. Ustinov, A.Y. Egorov, A.E.
    Zhukov, P.S. Kop’ev, S.V. Zaitsev, N.Y. Gordeev, Zh.I. Alferov, A.I.
    Borovkov, A.O. Kosogov, S.S. Ruvimov, P. Werner, U. G. osele, and
    J. Heydenreich, Phys. Rev. B. 54 (1996) 8743
    17. M. V. Maximov, A. F. Tsatsul’nikov, B. V. Volovik, D. S. Sizov, Yu. M.
    Shernyakov, I. N. Kaiander, A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin,
    V. M. Ustinov, and Zh. I. Alferov , R. Heitz, V. A. Shchukin,N. N.
    Ledentsov, D. Bimberg, Yu. G. Musikhin and W. Neumann Phys. Rev.
    B. 62 (1996) 16671
    18. R. Songmuang*, S. Kiravittaya, and O.G. Schmidt, J. Crystal Growth
    249 ,416(2003)
    19. W.-H. Chang, Hsiang-Yu Chen, H.-S. Chang, W.-Y. Chen, T. M. Hsu,
    T.-P. Hsieh J.-I. Chyi, and N.-T. Yeh , Appl. Phys. Lett. 86, 131917
    (2005)
    20. S. Fafard and C. Ni. Allen, Appl. Phys. Lett., 75, 16 (1999)
    21. H.Y. Liu, X.D. Wang, Y.Q. Wei, B. Xu, D. Ding, and Z.G. Wang,
    Journal of Crystal Growth 220, 216(2000)
    22. T. M. Hsu, Y. S. Lan, W.-H. Chang,N. T. Yeh and J.-I. Chyi , Appl.
    Phys. Lett., 76, 6 (2000)
    23. Yang, M. J. Jurkovic, J. B. Heroux, and W. I. Wang, APL, 75,
    178(1999)

    QR CODE
    :::