跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林千又
Chian-you Lin
論文名稱: 表面電漿子增強氮化銦鎵/氮化鎵多重量子井結構之自發性復合速率探討
Surface Plasmon Enhanced Spontaneous Recombination Rate in InGaN/GaN Multiquantum-well Structures
指導教授: 徐子民
Tzu-min Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 95
語文別: 中文
論文頁數: 56
中文關鍵詞: 量子井表面電漿子
外文關鍵詞: quantum well, surface plasmon
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討表面電漿子增強氮化銦鎵/氮化鎵多重量子井之自發性復合速率,在實驗方面,我們在氮化銦鎵/氮化鎵多重量子井表面鍍上金屬薄膜使量子井能量和金屬表面電漿子能量耦合,並利用時間鑑別螢光光譜系統來量測各個能量螢光生命週期以便看自發性復合速率的改變,我們發現在表面電漿子共振能量處鍍金屬與未鍍金屬的生命期比值為最大,接下來,我們利用三層介質的色散關係所求得的表面電漿子共振頻率來證實我們的實驗,經過實驗值與理論值之整理與比較,我們可以確定表面電漿子共振存在於本實驗,並成功的將自發性復合速率增快了二倍多。


    In this thesis, we confer on surface plasmon enhanced spontaneous recombination rate in InGaN/GaN multiquantum-well structures. In our experiment, the emission energy of InGaN/GaN multiple quantum wells couple to the electron vibration energy of surface plasmon at the metal-semiconductor surface by depositing metallic thin film on InGaN/GaN multiple quantum wells. To see the modified spontaneous emission rate, the photoluminescence (PL) spontaneous emission rate at different energies was measured by time-resolved PL spectrum experimental setup. We find that the ratio of PL lifetime of the uncoated sample to that of the coated one becomes larger at metal surface plasmon energy. Also, the dispersion relation of three-layer dielectric media is used to calculate the surface plasmon resonance energy to establish our experiment. By comparing the experimental and theoretical results, the occurrence of surface plasmon in our experiment was confirmed. The enhancement of spontaneous emission rate was observed by more than two times.

    摘要 i 致謝 iii 目錄 v 圖目錄 vii 第1章 簡介 1 1.1. 表面電漿子簡介 1 1.2. 氮化銦鎵/氮化鎵多重量子井能帶 2 1.3. 研究動機與目的 3 第2章 基本原理 4 2.1. 表面電漿子的基本理論 4 2.2. 表面電漿子的色散關係式 5 2.3. 單一介面雙層介質之反射率 11 2.4. 三層介質的色散關式 13 2.5. 樣品色散關係 15 第3章 樣品結構與實驗裝置 20 3.1. 樣品結構 20 3.2. 微螢光光譜量測裝置 23 3.2.1 光激螢光(Photoluminescence, PL)理論 23 3.2.2 光激螢光實驗架設系統 24 3.3. 時間鑑別光激螢光光譜的原理及實驗裝置 27 第4章 結果與討論 29 4.1. 樣品的微螢光光譜分析 29 4.2. 發光速率的探討 32 4.2.1. 發光速率的實驗量測 32 4.2.1.1 樣品A(In0.2Ga0.8N/GaN:Si)自發性復合速率的探討 34 4.2.1.2 樣品B(In0.3Ga0.7N/GaN:Si,鍍銀25nm)自發性復合速率的探討 39 4.2.1.3 樣品B(In0.3Ga0.7N/GaN:Si,鍍金25nm)自發性復合速率的探討 43 4.2.2. 發光速率的理論推導 47 4.3. 發光速率增強的理論值與實驗值比較 50 第5章 結論 53 參考文獻 54

    [1] H. Raether, Surface Plasmons (Springer, New York,1988)
    [2] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Phys. Reports 408, 131 (2005).
    [3] R. W. Wood, Philos. Mag. 4, 396, 1902.
    [4] U. Fano, J. Opt. Soc. Am. 31, 213, 1941.
    [5] A. Hessel, and A. A. Oliner, Appl. Opt., 4, 1275, 1965.
    [6] C. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 107, 7426, 2003.
    [7] D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem. 84, 1977.
    [8] A. Wokaun, Molec. Phys. 56, 1, 1985.
    [9] M. Moskovits, J. Chem. Phys. 69, 4159, 1978.
    [10] J. C. Tsang, J. R. Kirtley, and T. N. Theis, Sol. State Common. 35 , 667 , 1980.
    [11] R. G. Freeman, K . C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan, Science 267, 1629, 1995.
    [12] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601(2004).
    [13] D. A. Schultz, Current Opinion in Biotechnology 14, 13(2003).
    [14] Gontijo, I. et al. Phys. Rev. B60. 11564-11567(1999).
    [15] K. Okamoto, I. Nik, and A. Scherer. Appl. Phys. Lett. 87, 071102(2005).
    [16] W. Barnes, Nat. Mater. 3, 588(2004).
    [17] J. A. Dionne, L. A. Sweatlock, and H. A. Atwater. Phys. Rev. B72, 075405(2005).
    [18] W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, Phys. Rev. B59, I2661(1998).
    [19] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry. Phys. Rev. Lett. 83, 2845(1999).
    [20] M. Specht, J. D. Pedamig, W. M. Heckl, and T. W. Hansch, Phys. Rev. Lett. 68, 476, 1992.
    [21] T. J. Silva and S. Schultz, and D. Weller, Appl. Phys. Lett. 65, 68, 1994.
    [22] Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, Appl. Phys. Lett. 66, 3407, 1995.
    [23] M. Ashino, and M. Ohtsu, Appl. Phys. Lett. 72, 1299, 1998.
    [24] O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, J. Appl. Phys. 92, 1078, 2002.
    [25] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, Jpn. J. Appl. Phys. 39, 982, 2000.
    [26] D. P. Tsai, and W. C. Lin, Appl. Phys. Lett. 77, 1413, 2000.
    [27] J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, Jpn. J. Appl. Phys. 40, 1831, 2001.
    [28] J. S. Biteen, N. S. Lewis, and Harry A. Atwater, Appl. Phys. Lett. 88, 131109, 2006

    QR CODE
    :::