跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊淵程
yuan-cheng chuang
論文名稱: 應用特徵分群技術於非侵入式神經活性與行 為活動訊號之生物指標萃取
Application of feature clustering technology in non-invasive neural activity and human activity signal extraction of biological indicators
指導教授: 羅孟宗
Men-Tzung Lo
吳立青
Li-Ching Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 系統生物與生物資訊研究所
Graduate Institute of Systems Biology and Bioinformatics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 心房顫動支援向量機物聯網人體活動辨識皮膚交感神經
外文關鍵詞: Atrial Fibrillation, support vector machine, Internet of Thing, Human Activity Recognition, Human Activity Recognition
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心臟疾病的發生多半與平日生活型態有關,根據先前的研究表明[1],現代人
    因工作多不動而造成罹患心臟疾病的風險增加 1.18 倍,而為了能夠檢測心臟疾病與平
    時活動狀況,本文將建立一個能夠快速檢測的平台,分別辨識 AF 有無復發以及辨識人
    體活動型態,用於了解心房顫動與活動型態的關係。
    為了觀察心房顫動復發的問題,且透過電燒後能減少復發的風險[2],並能利用非
    侵入式訊號觀察取得神經訊號,之後透過對交感神經訊號資料分析,能夠找出心 AF 動
    復發與沒有復發之間統計上差別,能既方便又安全的方式診斷心 AF 動的問題。
    心房顫動(atrial fibrillation; AF)是指心房快速且不規律的收縮,當心房無法
    有效地收縮,造成血液流動不佳,增加血管產生血栓的風險。一旦血栓順著血流流到
    腦部血管使腦部血管阻塞,則會造成腦中風。心 AF 動約會增加 5 倍腦中風的風險,而
    心房顫動導致的中風,預後很差且復發率高。[3]
    自主神經系統在調節心臟離子通道與心肌收縮扮演很重要的角色,而以往周邊交
    感神經活動(SNA)在量測時,須透過侵入式的電極量測,在技術上有困難且容易產生動
    作雜訊, 而透過標準 ECG 貼片電極,可檢測多種電生理信號。[4]
    將提取的電生理訊號透過數位濾波與其他資料處理方法提取其訊號的特徵,並用
    於訓練機器學習模型上或其他資料分析。
    為了人體活動偵測分析,我們研發無線藍芽低功耗三軸加速度計穿戴裝置,透過
    「物聯網」以手機 APP 為介面,測量人體活動加速度,再提取三軸加速度訊號的特
    徵,透過支援向量機(support vector machine)的方式分析人體活動型態。
    三軸加速度計(G-sensor)為記錄加速度變化資訊的微機電零件,在工程上廣泛應
    用,再加上固態微機電系統(Micro Electro Mechanical Systems , MEMS)的發展,使
    零件尺寸能越來越小,製作成本隨著技術與發展也越來越低,已被廣泛應用在穿戴式
    裝置中收集人體活動資料,用以訓練人體活動偵測模型。
    本文將藉由多項分析了解電燒後心房顫動復發與沒有復發在 SKNA 訊號上是否有統
    ii
    計上的差別;也透過低功耗無線藍芽三軸加速度計的資料訓練人體活動偵測模型。


    The occurrence of heart disease is mostly related to the daily life
    style. According to previous studies [1], modern people’s risk of heart
    disease increases by 1.18 times due to more inactive at work. In order to
    be able to detect heart disease and daily activities, this study will build
    a platform for rapid detection to understand the relationship between
    atrial fibrillation and activity patterns.
    To measure atrial fibrillation recurrence and reduce the risk of atrial
    fibrillation recurrence after ablation, we extracted nerve signal with
    noninvasive electrode, then analyzed sympathetic nerve activity signal to
    find out the difference between atrial fibrillation recurrence and no
    recurrence, it is convenience and security method to diagnose atrial
    fibrillation recurrence.
    Atrial fibrillation is an irregular and often rapid heart rate, When
    the atria cannot be effectively contracted, poor blood flow is caused,
    which increases the risk of blood clots. Once the thrombus flows along the
    bloodstream to the blood vessels in the brain and blocks the blood vessels
    in the brain, it will cause a stroke. Atrial fibrillation increases the
    risk of stroke by 5 times. Stroke caused by atrial fibrillation has a poor
    prognosis and a high recurrence rate. [3]
    The autonomic nervous system is important to modulate cardiac ion
    channel and myocardial contractility. Sympathetic nerve activity can be
    measured with invasive microneurography techniques, these are technically
    difficult and easy to produce motion artifact, but with standard ECG patch
    electrode, we can detect multiple electrophysiological signals. [4]
    iv
    The electrophysiological signal is extracted through digital filtering
    and other data processing methods to extract the characteristics of the
    signal, and used for training machine learning models or other data
    analysis.
    In order to recognize human activity, we designed a wireless Bluetooth
    Low Energy three-axis accelerometer wearable device, through the "Internet
    of Things" using the mobile phone APP as the interface to measure the
    acceleration of human activities, and then through the support vector
    machine to analyze the types of human activity.
    Three-axis accelerometer (G-sensor) is a micro-electromechanical part
    that records acceleration change information. It is widely used in
    engineering. With the development of Micro Electromechanical Systems
    (MEMS), the size of components can be smaller, and the production cost is
    getting lower and lower with technology and development. It has been widely
    used in wearable devices to collect human activity data to train human
    activity recognition models.
    In the study, we will find out the statistically difference between AF
    recurrence and AF no recurrence after ablation, and we will also train
    human activity recognition model with the data of Bluetooth low energy
    wireless three-axis accelerometer device.

    中文摘要...................................................................................................................................................i 英文摘要.................................................................................................................................................iii 誌謝..........................................................................................................................................................v 圖目錄...................................................................................................................................................viii 表目錄......................................................................................................................................................x 緒論......................................................................................................................................................... 1 1-1 研究背景 ............................................................................................................................... 1 1-1.1 皮膚交感神經訊號(skin sympathetic nerve activity, SKNA) ......................... 1 1-1.2 人體活動辨識(Human Activity Recognition, HAR)............................................. 3 1-2 研究目標 ............................................................................................................................... 5 1-2.1 辨識 AF 有無復發......................................................................................................... 5 1-2.2 辨識人體活動型態....................................................................................................... 6 原理與方法............................................................................................................................................. 7 2-1 SKNA ....................................................................................................................................... 7 2-1.1 資料處理....................................................................................................................... 7 2-1.2 Burst analyses......................................................................................................... 10 2-1.3 統計分析..................................................................................................................... 12 2-2 人體活動辨識(Human Activity Recognition, HAR).................................................... 14 2-2.1 MCU 與 電路............................................................................................................... 14 2-2.2 加速度計(G-sensor)................................................................................................. 16 2-2.3 I 2 C................................................................................................................................ 19 2-2.4 快閃記憶體................................................................................................................. 21 2-2.5 SPI............................................................................................................................... 24 vii 2-2.6 BLE............................................................................................................................... 27 2-2.7 手機應用程式............................................................................................................. 28 2-2.8 支援向量機................................................................................................................. 31 實驗結果............................................................................................................................................... 34 3-1 SKNA 訊號 ........................................................................................................................... 34 3-1.1 ECG 訊號..................................................................................................................... 34 3-1.2 iSKNA 訊號................................................................................................................. 34 3-1.3 aSKNA 訊號................................................................................................................. 34 3-1.4 Burst analyses......................................................................................................... 39 3-1.5 統計分析..................................................................................................................... 39 3-2 人體活動辨識(Human Activity Recognition).............................................................. 42 3-2.1 硬體與電路................................................................................................................. 42 3-2.2 實驗流程..................................................................................................................... 46 3-2.3 資料處理..................................................................................................................... 50 3-2.4 支援向量機................................................................................................................. 53 結論與討論........................................................................................................................................... 59 4-1 皮膚交感神經活動(SKNA) ................................................................................................. 59 4-2 人體活動辨識(Human Activity Recognition).............................................................. 59 未來期望............................................................................................................................................... 61 參考文獻............................................................................................................................................... 62

    [1] M. Kivimäki et al., "Long working hours as a risk factor for atrial fibrillation: a multicohort study," European Heart Journal, vol. 38, no. 34, pp. 2621-2628, 2017, doi:
    10.1093/eurheartj/ehx324.
    [2] A. Verma et al., "Approaches to Catheter Ablation for Persistent Atrial Fibrillation,"
    New England Journal of Medicine, vol. 372, no. 19, pp. 1812-1822, 2015, doi:
    10.1056/NEJMoa1408288.
    [3] H. W. Choi, J. A. Navia, and G. S. Kassab, "Stroke Propensity Is Increased under Atrial
    Fibrillation Hemodynamics: A Simulation Study," PLOS ONE, vol. 8, no. 9, p. e73485,
    2013, doi: 10.1371/journal.pone.0073485.
    [4] T. Kusayama et al., "Simultaneous noninvasive recording of electrocardiogram and
    skin sympathetic nerve activity (neuECG)," Nature Protocols, vol. 15, no. 5, pp. 1853-
    1877, 2020/05/01 2020, doi: 10.1038/s41596-020-0316-6.
    [5] C. E. Chiang et al., "2016 Guidelines of the Taiwan Heart Rhythm Society and the
    Taiwan Society of Cardiology for the management of atrial fibrillation," (in eng), J
    Formos Med Assoc, vol. 115, no. 11, pp. 893-952, Nov 2016, doi:
    10.1016/j.jfma.2016.10.005.
    [6] M. G. Miglis, "Chapter 12 - Sleep and the Autonomic Nervous System," in Sleep and
    Neurologic Disease, M. G. Miglis Ed. San Diego: Academic Press, 2017, pp. 227-244.
    [7] A. Doytchinova et al., "Simultaneous noninvasive recording of skin sympathetic nerve
    activity and electrocardiogram," Heart Rhythm, vol. 14, no. 1, pp. 25-33, 2017/01/01/
    2017, doi: https://doi.org/10.1016/j.hrthm.2016.09.019.
    [8] P. Castiglioni, A. Faini, G. Parati, and M. D. Rienzo, "Wearable Seismocardiography," in
    2007 29th Annual International Conference of the IEEE Engineering in Medicine and
    Biology Society, 22-26 Aug. 2007 2007, pp. 3954-3957, doi:
    10.1109/IEMBS.2007.4353199.
    [9] N. Mora, F. Cocconcelli, G. Matrella, and P. Ciampolini, "Accurate Heartbeat Detection
    on Ballistocardiogram Accelerometric Traces," IEEE Transactions on Instrumentation
    and Measurement, vol. 69, no. 11, pp. 9000-9009, 2020, doi:
    10.1109/TIM.2020.2998644.
    [10] E. García-Gonzalo, Z. Fernández-Muñiz, P. J. Garcia Nieto, A. Sánchez, and M.
    Menéndez, "Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations
    with Learning Classifiers," Materials, vol. 9, p. 531, 06/29 2016, doi:
    10.3390/ma9070531.
    [11] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, "Human Activity
    Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector
    Machine," in Ambient Assisted Living and Home Care, Berlin, Heidelberg, J. Bravo, R.
    63
    Hervás, and M. Rodríguez, Eds., 2012// 2012: Springer Berlin Heidelberg, pp. 216-223.
    [12] X. Gao, H. Luo, Q. Wang, F. Zhao, L. Ye, and Y. Zhang, "A Human Activity Recognition
    Algorithm Based on Stacking Denoising Autoencoder and LightGBM," Sensors, vol. 19,
    no. 4, p. 947, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/4/947.
    [13] J. L. Reyes-Ortiz, A. Ghio, X. Parra, D. Anguita, J. Cabestany, and A. Català, "Human
    Activity and Motion Disorder Recognition: towards smarter Interactive Cognitive
    Environments," in ESANN, 2013.
    [14] T. Kusayama et al., "Skin sympathetic nerve activity and the temporal clustering of
    cardiac arrhythmias," (in eng), JCI Insight, vol. 4, no. 4, Feb 21 2019, doi:
    10.1172/jci.insight.125853.
    [15] S.-H. Shin et al., "Left Atrial Volume Is a Predictor of Atrial Fibrillation Recurrence
    After Catheter Ablation," Journal of the American Society of Echocardiography, vol.
    21, no. 6, pp. 697-702, 2008/06/01/ 2008, doi:
    https://doi.org/10.1016/j.echo.2007.10.022.
    [16] STUDENT, "THE PROBABLE ERROR OF A MEAN," Biometrika, vol. 6, no. 1, pp. 1-25,
    1908, doi: 10.1093/biomet/6.1.1.
    [17] "nordicsemi.com." https://www.nordicsemi.com/products/nrf51822 (accessed 04
    October, 2021).
    [18] L. Novak, P. Neuzil, J. Li, and M. Woo, "Ultrasensitive MEMS-based Inertial System,"
    pp. 552-554, 10/01 2009, doi: 10.1109/ICSENS.2009.5398301.
    [19] "I2C-bus specification and user manual Rev. 6."
    https://web.archive.org/web/20160804230952/http://www.nxp.com:80/documents/
    user_manual/UM10204.pdf (accessed 4 April, 2014).
    [20] C. Kim et al., 11.4 A 512Gb 3b/cell 64-stacked WL 3D V-NAND flash memory. 2017, pp.
    202-203.
    [21] " SPI Block Guide v3.06; Motorola/Freescale/NXP; 2003."
    https://web.archive.org/web/20150413003534/http://www.ee.nmt.edu/~teare/ee3
    08l/datasheets/S12SPIV3.pdf (accessed 04 February, 2004).
    [22] M. Honkanen, A. Lappetelainen, and K. Kivekas, "Low end extension for Bluetooth,"
    in Proceedings. 2004 IEEE Radio and Wireless Conference (IEEE Cat. No.04TH8746),
    22-22 Sept. 2004 2004, pp. 199-202, doi: 10.1109/RAWCON.2004.1389107.
    [23] "developer.android.com."
    https://developer.android.com/guide/components/activities/activity-lifecycle
    (accessed 04 October, 2021).
    [24] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, "A Public Domain Dataset
    for Human Activity Recognition using Smartphones," in ESANN, 2013.
    [25] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, "Transition-Aware
    Human Activity Recognition Using Smartphones," Neurocomputing, vol. 171, pp. 754-
    64
    767, 2016/01/01/ 2016, doi: https://doi.org/10.1016/j.neucom.2015.07.085.
    [26] T. Watanabe. "github." https://github.com/takumiw/Deep-Learning-for-HumanActivity-Recognition (accessed 27 January, 2021)

    QR CODE
    :::