跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李浩池
Hao-Chin Lee
論文名稱: 製備大面積矽單晶及鎳矽化物奈米線陣列之研究
Synthesis of Large Area Silicon and Nickel Silicide Nanowire Arrays
指導教授: 鄭紹良
Shao-Liang Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 鎳矽化物奈米線矽晶奈米線
外文關鍵詞: SiNWs, Ni silicide nanowires, Silicon nanowires
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中已成功在氫氟酸及硝酸銀混合溶液中,利用銀離子的氧化還原反應在(001)矽晶基材上製備出大面積且具方向性之矽晶奈米線陣列。為探討以此氧化還原反應之反應動力學,本實驗設計於不同反應溫度、時間及反應物濃度下進行矽晶奈米線之生成反應。經一系列實驗後發現,當反應於0–50 °C下進行時,所生成之矽晶奈米線長度與反應時間呈一次方線性關係,且經測量矽晶奈米線於不同溫度下之生成反應速率,可得到生成矽晶奈米線之反應活化能為0.41 eV。而當改變反應溶液之硝酸銀及氫氟酸濃度時,可獲知反應物之反應級數,經計算後可求得以此方式製備矽晶奈米線之生成反應速率經驗式。進一步以TEM、SAED及HRTEM鑑定分析所生成之矽晶奈米線,可發現其線寬約在30-200 nm之間且長寬比可達900-6000。而成長方向經鑑定後為[001],此與本實驗所使用之(001)矽晶基材軸向相同。在本研究中亦提出生成矽晶奈米線可能之反應機制,推測是因銀離子與矽晶基材在微區域中發生氧化還原反應,且因矽晶基材於不同晶面之氧化速率不同而造成矽晶基材被垂直地向下蝕刻,繼而生成矽晶奈米線陣列。
    此外,將Ni薄膜鍍在分散之矽晶奈米線上,經不同溫度退火後,可發現磊晶之NiSi2相於300 ℃退火時即可生成,相較於Ni薄膜在大面積矽晶基材上反應生成NiSi2所需之溫度,NiSi轉為NiSi2之相轉換溫度大幅降低400-450 ℃。且隨著矽晶奈米線線寬變窄,促進磊晶NiSi2生成之效應更為顯著。而所生成之鎳矽化物奈米線經TEM及SAED分析後可得,NiSi2與Si之磊晶關係為[100]NiSi2//[100]Si,(002)NiSi2//(004)Si及[110]NiSi2//[110]Si ,(1-11)NiSi2//(1-11)Si。此在奈米尺度下所發現有別於Ni薄膜與大面積矽晶基材試片之不同矽化反應的結果,可歸因於Si與NiSi2在室溫下之晶格不匹配程度僅約-0.4 %,且反應進行時主要擴散的原子-Ni受到一維奈米線結構之表面積/體積比變大的影響,使Ni原子得經表面快速擴散至NiSi2/Si界面處反應,進而降低生成磊晶NiSi2之反應溫度。


    In this study, large area well-aligned silicon nanowire (SiNW) arrays were successfully synthesized on (001)Si substrates by redox reaction of Ag+ and Si in the aqueous solution containing silver nitrate (AgNO3(aq)) and hydrofluoric acid (HF(aq)). The growth kinetics of the SiNWs formed by redox reaction has been investigated. The lengths of the SiNWs were found to increase linearly in samples synthesized at 0–50 °C. By measuring the growth rate at different reaction temperatures, the activation energy for linear growth of the SiNWs was found to be 0.41 eV. In addition, by varying the concentrations of AgNO3 and HF solutions, the orders of reaction with respect to the reactants and the rate equation for the growth of SiNWs have been obtained. From TEM, SAED, and HRTEM analysis, the SiNWs are about 30-200 nm in width with aspect ratios of about 900-6000. The axial orientation of the SiNWs was identified to be along the [001] direction, which is the same as that of the initial (001)Si wafer. The possible mechanisms for the growth of SiNW arrays are discussed in the context of the localized electrochemical redox reaction processes and the oxidation and etching rates of different Si crystal planes.
    For the evaporated Ni thin films on SiNWs samples after different heat treatments, the epitaxial NiSi2 phase was observed to form at an annealing temperature as low as 300 ℃. The formation temperature of NiSi2 phase is about 400-450 ℃ lower than what is usually needed for the NiSi to NiSi2 transformation. In addition, the effect on the enhanced formation of epitaxial NiSi2 is apparently more pronounced with a decrease in the width of SiNWs. Based on the SAED and TEM analysis, the epitaxial orientation relationships between the NiSi2 and SiNWs were identified to be [100]NiSi2//[100]Si, (002)NiSi2//(004)Si and [110]NiSi2//[110]Si, (1-11)NiSi2//(1-11)Si. The observed result could be attributed to the small lattice mismatch (-0.4 %) between NiSi2 and Si at room temperature, and the fast diffusion of Ni atoms via the surface of Ni films to the NiSi2/Si interface since the surface/volume ratio is higher for the one-dimensional (1D) nanowire structures.

    目錄……………………………………………………………………i 第一章 前言及文獻回顧……………………………………………1 1.1 前言………………………………………………………………1 1.2 以化學氣相沉積法製備矽晶奈米線……………………………3 1.2.1 氣-液-固成長機制……………………………………………3 1.2.2 氧化矽作為催化劑的成長機制………………………………5 1.2.3 氣-固成長機制………………………………………………7 1.2.4 固-液-固成長機制……………………………………………8 1.3 利用無電鍍及析出樹枝狀的銀來製備矽單晶奈米線…………8 1.4 矽化鎳化合物……………………………………………………10 1.5 研究動機…………………………………………………………13 第二章 實驗步驟、設備及分析儀器………………………………14 2.1 實驗步驟…………………………………………………………14 2.1.1常溫常壓下在矽晶圓上無電鍍銀製備矽晶奈米線…………14 2.1.2 製備鎳矽化物奈米線…………………………………………15 2.2 試片分析…………………………………………………………16 2.2.1 低真空掃描式電子顯微鏡……………………………………16 2.2.2 接觸角測量儀…………………………………………………16 2.2.3穿透式電子顯微鏡與X光能量散佈光譜儀……………………16 2.2.4高分辨穿透式電子顯微鏡……………………………………17 第三章 實驗結果……………………………………………………18 3.1矽單晶奈米線陣列之製備及其成長動力學的探討……………18 3.1.1在矽基材上以無電鍍銀製備矽晶奈米線……………………18 3.1.2以無電鍍銀方式製備矽晶奈米線的成長動力學……………19 3.1.3 接觸角量測分析………………………………………………25 3.1.4 在預置規則圖案中成長有序矽晶奈米線陣列………………26 3.1.5 反應機制………………………………………………………27 3.2 鎳矽化物奈米線之製備及其界面反應…………………………29 第四章 結論與未來展望……………………………………………34 4.1 結論………………………………………………………………34 4.2 未來展望…………………………………………………………36 4.2.1 線寬一致、規則排列且具方向性之矽晶奈米線的製備……36 4.2.2 規則排列之金屬矽化物奈米線結構…………………………36 參考文獻………………………………………………………………37 表目錄…………………………………………………………………42 圖目錄…………………………………………………………………46

    [1] G. E. Moore, “Cramming More Components onto Integrated Circuits”,
    Electronics 38 (1965).
    [2] 特騰著,李雅明譯,IC如何創新,民國八十九年。
    [3] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89-90.
    [4] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature”, Appl. Phys. Lett. 72 (1998) 1835-1837.
    [5] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and Growth Mechanism Study of Self-Assembled Silicon Nanowires Synthesized by Thermal Evaporation”, Chem. Phys. Lett. 337 (2001) 18-24.
    [6] T. Hanrath and B. A. Korgel, “Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals”, Adv. Mater. 15 (2003) 437-440.
    [7] Y. H. Yang, S. J. Wu, H. S. Chiu, P. I. Lin and Y. T. Chen, “Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation”, J. Phys. Chem. B 108 (2004) 846-852.
    [8] Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung, “Synthesis and Characterization of Taper- and Rodlike Si Nanowires on SixGe1-x Substrate”, J. Phys. Chem. B 109 (2005) 21831-21835.
    [9] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, “Controlled Growth Structures of Molecular-Scale Silicon Nanowires”, Nano Lett. 4 (2004) 433-436.
    [10] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, and C. M. Lieber, “Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires,” Appl. Phys. Lett. 78 (2001) 2214-2216.
    [11] S. P. Ge, K. L. Jiang, X. X. Lu, Y. F. Chen, R. M. Wang, and S. S. Fan, “Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays”, Adv. Mater. 17 (2005) 56-61.
    [12] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide”, Phys. Rev. B 58 (1998) R16024-R16026.
    [13] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assited Growth of Semiconducting Nanowires”, Adv. Mater. 15 (2002) 635-640.
    [14] C. P. Li, C. S. Lee, X. L. Ma, N. Wang, R. Q. Zhang, and S. T. Lee, “Growth Direction and Cross-Sectional Study of Silicon Nanowires,” Adv. Mater. 15 (2003) 607-609.
    [15] Y. Yao, F. H. Li, S. T. Lee, “Oriented Silicon Nanowires on Silicon Substrates From Oxide-Assisted Growth and Gold Catalysts”, Chem. Phys. Lett. 406 (2005) 381-385.
    [16] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas”, Appl. Phys. Lett. 75 (1999) 1842-1844.
    [17] S. S. Brenner and G. W. Sears, “Mechanism of Whisker Growth-Ⅲ Nature of Growth Sites”, Acta Met. 4 (1956) 268-270.
    [18] H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C. S. Lee, and S. T. Lee, “Temperature Dependence of Sinanowire Morphology”, Adv. Mater. 13 (2001) 317-320.
    [19] Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Sicence 291 (2001) 1947-1949.
    [20] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. W. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224-228.
    [21] Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. W. Feng, and Z. Q. Xue, “Growth of Silicon Nanowires by Heating Si Substrate”, Chin. Phys. Lett. 19 (2002) 240-242.
    [22] Y. J. Xing, D. P. Yu, Z. H. Xi, and Z. Q. Xue, “Silicon Nanowires Grown From Au-Coated Si Substrate”, Appl. Phys. A 76 (2003) 551-553.
    [23] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry”, Adv. Mater. 14 (2002) 1164-1167.
    [24] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition”, Adv. Funct. Mater. 13 (2003) 127-132.
    [25] K. Q. Peng and J. Zhu, “Morphological Selection of Electroless Metal Deposits on Silicon in Aqueous Fluoride Solution”, Electrochem. Acta 49 (2004) 2563-2568.
    [26] K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays”, Adv. Mater. 16 (2004) 73-76.
    [27] T. QIU, X. L. WU, Y. F. MEI, P. K. CHU, and G. G. SIU, “Self-Organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition Method”, Appl. Phys. A 81 (2005) 669-671.
    [28] Y. Y. Song, Z. D. Gao, J. J. Kelly, and X. H. Xia, “Galvanic Deposition of Nanostructured Noble-Metal Films on Silicon”, Electrochem. Solid-Sate Lett. 8 (2005) C148-C150.
    [29] T. Qiui, X. L. Wu, Y. F. Mei, G. J. Wan, P. K. Chu, and G. G. Siu, “From Si Nanotubes to Nanowires: Synthesis, Characterization, and Self-Assembly”, J. Crystal Growth. 277 (2005) 143-148.
    [30] T. Qiu, X. L. Wu, G. J. Wan, Y. F. Mei, G. G. Siu, and P. K. Chu, Self-Assembled Growth and Enhanced Blue Emission of SiOxNy-Capped Silicon Nanowire Arrays, Appl. Phys. Lett. 86 (2005) 193111-193113.
    [31] Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures”, Nature 430 (2004) 61-65.
    [32] K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh, J. R. Kim, and J. J. Kim, “Anomalous Growth and Characterization of Carbon-Coated Nickel Nitride Nanorods Using Carbon Nanotube as a Template”, Appl. Phys. Lett. 71 (1997) 2271-2273.
    [33] C. A. Decker, R. Solanki, J. L Freeouf, J. R. Carruthers, and D. R. Evans, “Directed Growth of Nickel Silicide Nanowires”, Appl. Phys. Lett. 84 (2004) 1389-1391.
    [34] J. F. Lin, J. P. Bird, Z. He, P. A. Bennett, and D. J. Smith, “Signatures of Quantum Transport in Self-Assembled Epitxial Nickel Silicide Nanowires”, Appl. Phys. Lett. 85 (2004) 281-283.
    [35] C. W. Nieh and L. J. Cehn, “Cross-Section Transmission Electron Microscope Study of Solid Phase Epitaxial Growth in BF2+-Implanted (001) Si”, J. Appl. Phys. 60 (1986) 3546-3549.
    [36] H. Habuka, T. Suzuki, S. Yamamoto, A. Nakamura, T. Takeuchi, and M. Alhara, “Dominant Rate Process of Silicon Surface Etching by Hydrogen Chloride Gas”, Thin Solid Films 489 (2005) 104-110.
    [37] J. E. A. M. van den Meerakker, R. J. G. Elfrink, F. Roozeboom, and J. F. C. M. Verhoeven, “Etching of Deep Macropores in 6 in. Si Wafers”, J. Electrochem. Soc. 147 (2000) 2757-2761.
    [38] J. E. A. M. van den Meerakker, R. J. G. Elfrink, W. M. Weeda, and Roozeboom, “Anodic Silicon Etching; the Formation of Uniform Arrays of Macropores or Nanowires”, Phys. Stat. Sol. (a) 197 (2003) 57-60.
    [39] S. Ronnebeck, J. Carstensen, S. Ottow, and H. Foll, “Crystal Orientation Dependence of Macropore Growth in n-Type Silicon”, Electrochem. Solid-State Lett. 2 (1999) 126-128.
    [40] M. Christophersen, J. Carstensen, A. Feuerhake, and H. Foll, “Crystal Orientation and Electrolyte Dependence for Macropore Nucleation and Stable Growth on p-Type Si”, Mater. Sci. Eng. B 69-70 (2000) 194-198.
    [41] J. Carstensen, M. Chritophersen, and H. Foll, “Pore Formation Mechanisms for the Si-HF System”, Mater. Sci. Eng. B 69-70 (2000) 23-28.
    [42] H. Foll, M. Christophersen, J. Carstensen and G. Hasse, “Formation and Application of Porous Silicon”, Mater. Sci. Eng. R 39 (2002) 93-141.
    [43] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1-0.6 mm Oxide Openings Prepared by Electron Beam Lithography”, Appl. Phys. Lett. 69 (1996) 999-1001.
    [44] H. F. Hsu, L. J. Chen, and J. J. Chu, “ Epitaxial Growth of CoSi2 on (111) Si Inside Miniature-Size Oxide by Rapid Thermal Annealing”, J. Appl. Phys. 69 (1991) 4282-4285.
    [45] F. D. Heurle, C. S. Petrsson, L. Slot, B. Strizker, “Diffusion in Intermetallic Compounds with the CaF2 Structure: A Marker Study of the Formation of NiSi2 Thin Film”, J. Appl. Phys. 53 (1982) 5678-5681.

    QR CODE
    :::