跳到主要內容

簡易檢索 / 詳目顯示

研究生: 安皮爾
Luke Jonathan Y. Ampil
論文名稱: 超級颱風雷伊(2021)在西北太平洋和南海的大氣和海洋條件
Atmospheric and Oceanic Conditions of Super Typhoon Rai (2021) in Western North Pacific and South China Sea
指導教授: 劉說安
Yuei-An Liou
錢樺
Hwa Chien
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 75
中文關鍵詞: 熱帶氣旋西北太平洋快速加強
外文關鍵詞: tropical cyclone, western North Pacific, rapid intensification
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱帶氣旋(TCs)是自然風險,尤其是在最活躍的西北太平洋(WNP)地區,對生態系統和人類社會產生巨大的影響。颱風是指持續最大風速≥64節的熱帶氣旋,通常在夏季發生,但現在在西北太平洋幾乎全年都會出現。雷伊颱風是2021年12月的冬季超級颱風,也是繼2013年11月超級颱風海燕之後菲律賓第二個造成經濟損失最嚴重的颱風。雷伊颱風在登陸菲律賓前快速增強(RI);它在南海經歷了另一次快速增強,並成為南海記錄中第三個5級強度颱風。本研究調查了雷伊颱風的環境條件,以確定哪些因素對颱風的強化最為顯著。本研究使用JTWC的最佳路徑數據來描述颱風的位置和強度等特徵,分別使用ERA5和CMEMS全球海洋物理再分析的數據來描述雷伊颱風的大氣和海洋環境,並且量化分析影響熱帶氣旋強度變化的變數,例如垂直風切(VWS)、相對濕度(RH)、海表溫度(SST)、T100和海洋熱含量(OHC),還使用地球同步氣象衛星—向日葵八號(Himawari-8, H-8)的紅外線影像來補充熱帶氣旋最佳路徑和再分析數據的分析。結果顯示,雷伊颱風的大氣和海洋條件對西北太平洋的快速增強時期1非常有利;同時,其條件對於南海的快速增強時期2相對不利,尤其是在海洋組成部分。儘管環境條件不利,雷伊颱風仍能經歷快速增強並在南海增強為超級颱風的強度。這些結果表明,內核過程可能在發生快速增強時有著更重要的作用。雖然以前的研究聲稱有利的大範圍環境條件並不能保證快速增強的發生,本研究的結果表示反之亦然,不利的大範圍環境條件並不能排除快速增強的可能性。


    Tropical cyclones (TCs) are natural hazards that greatly impact ecosystems and human society especially in the western North Pacific (WNP), which is the most active region in the world. Typhoons, TCs with maximum sustained winds ≥64 knots (kts), typically occur during summer but now occur almost year-round in the WNP. Typhoon Rai was a winter super typhoon event in December 2021 and became the 2nd most economically damaging typhoon in the Philippines after Super Typhoon Haiyan in November 2013. Typhoon Rai experienced rapid intensification (RI) shortly before it made landfall in the Philippines. It experienced another RI event in the South China Sea (SCS) and became the 3rd recorded category 5 intensity typhoon in the SCS. This study investigates the environmental conditions of the Typhoon Rai event to determine which factors are the most significant for the intensification of the typhoon. This study uses the best track data from JTWC to describe the TC characteristics such as location and intensity. Data from ERA5 and CMEMS global ocean physics reanalysis are used to describe the atmospheric and oceanic environments, respectively, of the Typhoon Rai event. Variables affecting the intensity change of TCs such as VWS, RH, SST, T100, and OHC were quantified. IR imagery from Himawari-8 geostationary satellite was also used to supplement the analysis of TC best track and reanalysis data. Results show that atmospheric and oceanic conditions of Typhoon Rai were favorable for the RI1 period in the WNP. Meanwhile conditions were less favorable for the RI2 period in the SCS, particularly the oceanic component. Despite the unfavorable environment, Typhoon Rai was still able to experience RI and strengthen into super typhoon intensity in the SCS. These results indicate that inner-core processes may play a more significant role for RI to occur. While previous studies have claimed that favorable large-scale environment conditions do not guarantee the occurrence of RI, the results of this study suggest the inverse is also true, that unfavorable large-scale environment conditions do not exclude the possibility of RI.

    Chinese Abstract i English Abstract ii Acknowledegements iii Table of Contents iv List of Figures vi List of Tables viii Explanation of Symbols ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Significance 1 1.3 Objectives 2 Chapter 2 Review of Related Literature 3 2.1 Factors influencing TC track 3 2.1.1 Atmospheric steering flow and subtropical high 3 2.1.2 Fujiwhara Effect 4 2.2 Factors influencing TC intensity 5 2.2.1 Atmospheric factors 5 2.2.2 Oceanic factors 7 2.2.3 Rapid intensification 9 Chapter 3 Methodology 11 3.1 TC track data 12 3.2 Reanalysis data 15 3.2.1 ERA5 15 3.2.2 CMEMS 19 3.3 Satellite images 21 Chapter 4 Results and Discussion 23 4.1 Results 23 4.1.1 Typhoon Movement 23 4.1.2 Typhoon Intensification 25 4.2 Comparison of large-scale characteristics with Typhoon Haiyan 39 4.3 Discussion 43 Chapter 5 Conclusions and Recommendations 47 5.1 Conclusions 47 5.2 Recommendations 48 Bibliography 51 Appendix 58

    1. Pandey, R. S., Liou, Y.-A., & Liu, J.-C. (2021). Season-dependent variability and influential environmental factors of super-typhoons in the Northwest Pacific basin during 2013–2017. Weather and Climate Extremes, 31, 100307.
    2. Chan, P. W., Choy, C. W., He, J. Y., & Li, Q. S. (2022). An observational study of Super Typhoon Rai, a very late‐season typhoon necessitating the issuance of a tropical cyclone warning signal for Hong Kong in December 2021. Weather, 77(12), 433-438.
    3. Emanuel, K. (2018). 100 years of progress in tropical cyclone research. Meteorological Monographs, 59, 15-1.
    4. Landsea, C. W., & Cangialosi, J. P. (2018). Have we reached the limits of predictability for tropical cyclone track forecasting?. Bulletin of the American Meteorological Society, 99(11), 2237-2243.
    5. Cangialosi, J. P., Blake, E., DeMaria, M., Penny, A., Latto, A., Rappaport, E., & Tallapragada, V. (2020). Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Weather and Forecasting, 35(5), 1913-1922.
    6. Kimberlain, T. B., & Breman, M. J. (2017). Tropical cyclone motion. Global Guide to Tropical Cyclone Forecasting, 63-125.
    7. Hung, C. W., Shih, M. F., & Lin, T. Y. (2020). The climatological analysis of typhoon tracks, steering flow, and the pacific subtropical high in the vicinity of Taiwan and the Western North Pacific. Atmosphere, 11(5), 543.
    8. Fujiwhara, S. (1921). The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quarterly Journal of the Royal Meteorological Society, 47(200), 287-292.
    9. Fujiwhara, S. (1923). On the growth and decay of vortical systems. Quarterly Journal of the Royal Meteorological Society, 49(206), 75-104.
    10. Fujiwhara, S. (1931). Short note on the behavior of two vortices. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 13(3), 106-110.
    11. Prieto, R., McNoldy, B. D., Fulton, S. R., & Schubert, W. H. (2003). A classification of binary tropical cyclone–like vortex interactions. Monthly weather review, 131(11), 2656-2666.
    12. Brand, S. (1970). Interaction of binary tropical cyclones of the western North Pacific Ocean. Journal of Applied Meteorology and Climatology, 9(3), 433-441.
    13. Liou, Y. A., Liu, J. C., Wu, M. X., Lee, Y. J., Cheng, C. H., Kuei, C. P., & Hong, R. M. (2016). Generalized empirical formulas of threshold distance to characterize cyclone–cyclone interactions. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3502-3512.
    14. Dong, K., & Neumann, C. J. (1983). On the relative motion of binary tropical cyclones. Monthly weather review, 111(5), 945-953.
    15. Liou, Y. A., & Pandey, R. S. (2020). Interactions between typhoons Parma and Melor (2009) in North West Pacific Ocean. Weather and Climate Extremes, 29, 100272.
    16. Rogers, R. F. (2021). Recent advances in our understanding of tropical cyclone intensity change processes from airborne observations. Atmosphere, 12(5), 650.
    17. Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10), 669-700.
    18. DeMaria, M. (1996). The effect of vertical shear on tropical cyclone intensity change. Journal of Atmospheric Sciences, 53(14), 2076-2088.
    19. DeMaria, M., & Kaplan, J. (1994a). A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather and Forecasting, 9(2), 209-220.
    20. Frank, W. M., & Ritchie, E. A. (2001). Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly weather review, 129(9), 2249-2269.
    21. Kaplan, J., & DeMaria, M. (2003). Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather and forecasting, 18(6), 1093-1108.
    22. Zeng, Z., Wang, Y., & Wu, C. C. (2007). Environmental dynamical control of tropical cyclone intensity—An observational study. Monthly Weather Review, 135(1), 38-59.
    23. Hendricks, E. A., Peng, M. S., Fu, B., & Li, T. (2010). Quantifying environmental control on tropical cyclone intensity change. Monthly Weather Review, 138(8), 3243-3271.
    24. Tang, B., & Emanuel, K. (2010). Midlevel ventilation’s constraint on tropical cyclone intensity. Journal of the Atmospheric Sciences, 67(6), 1817-1830.
    25. Tang, B., & Emanuel, K. (2012). Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. Journal of the Atmospheric Sciences, 69(8), 2394-2413.
    26. Lee, Y. S., Liou, Y. A., Liu, J. C., Chiang, C. T., & Yeh, K. D. (2017). Formation of winter supertyphoons Haiyan (2013) and Hagupit (2014) through interactions with cold fronts as observed by multifunctional transport satellite. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3800-3809.
    27. Liou, Y. A., Liu, J. C., Liu, C. P., & Liu, C. C. (2018). Season-dependent distributions and profiles of seven super-typhoons (2014) in the Northwestern Pacific Ocean from satellite cloud images. IEEE Transactions on Geoscience and Remote Sensing, 56(5), 2949-2957.
    28. Mei, W., Xie, S. P., Primeau, F., McWilliams, J. C., & Pasquero, C. (2015). Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science advances, 1(4), e1500014.
    29. Leipper, D. F., & Volgenau, D. (1972). Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr, 2(3), 218-224.
    30. Shay, L. K., Goni, G. J., & Black, P. G. (2000). Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5), 1366-1383.
    31. Mainelli, M., DeMaria, M., Shay, L. K., & Goni, G. (2008). Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Weather and Forecasting, 23(1), 3-16.
    32. Park, M. S., Elsberry, R. L., & Harr, P. A. (2012). Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Tropical Cyclone Research and Review, 1(4), 448-457.
    33. Goni, G., DeMaria, M., Knaff, J., Sampson, C., Ginis, I., Bringas, F., ... & Halliwell, G. (2009). Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22(3), 190-197.
    34. Price, J. F. (2009). Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature?. Ocean Science, 5(3), 351-368.
    35. Schade, L. R., & Emanuel, K. A. (1999). The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model. Journal of the atmospheric sciences, 56(4), 642-651.
    36. Emanuel, K., DesAutels, C., Holloway, C., & Korty, R. (2004). Environmental control of tropical cyclone intensity. Journal of the atmospheric sciences, 61(7), 843-858.
    37. D'Asaro, E. A., Black, P. G., Centurioni, L. R., Chang, Y. T., Chen, S. S., Foster, R. C., ... & Wu, C. C. (2014). Impact of typhoons on the ocean in the Pacific. Bulletin of the American Meteorological Society, 95(9), 1405-1418.
    38. Pun, I. F., Lin, I. I., Wu, C. R., Ko, D. S., & Liu, W. T. (2007). Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1616-1630.
    39. Lin, I. I., Wu, C. C., Pun, I. F., & Ko, D. S. (2008). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Monthly Weather Review, 136(9), 3288-3306.
    40. Lee, C. Y., Tippett, M. K., Sobel, A. H., & Camargo, S. J. (2016). Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nature communications, 7(1), 10625.
    41. Shu, S., Ming, J., & Chi, P. (2012). Large-scale characteristics and probability of rapidly intensifying tropical cyclones in the western North Pacific basin. Weather and forecasting, 27(2), 411-423.
    42. Fudeyasu, H., Ito, K., & Miyamoto, Y. (2018). Characteristics of tropical cyclone rapid intensification over the western North Pacific. Journal of Climate, 31(21), 8917-8930.
    43. Chu, J. H., Sampson, C. R., Levine, E. S., & Fukada, E. (2002). The Joint Typhoon Warning Center tropical cyclone best tracks 1945–2000 (Report). Joint Typhoon Warning Center.
    44. Carrasco, C. A., Landsea, C. W., & Lin, Y. L. (2014). The influence of tropical cyclone size on its intensification. Weather and Forecasting, 29(3), 582-590.
    45. Dvorak, V. F. (1975). Tropical cyclone intensity analysis and forecasting from satellite imagery. Monthly Weather Review, 103(5), 420-430.
    46. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., ... & Thépaut, J. N. (2023). ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], 10.
    47. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). Global Ocean Physics Analysis and Forecast [Data set]. https://doi.org/10.48670/moi-00016
    48. E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). Global Ocean Physics Reanalysis [Data set]. https://doi.org/10.48670/moi-00021
    49. Bolton, D. (1980). The computation of equivalent potential temperature. Monthly weather review, 108(7), 1046-1053.
    50. Davies-Jones, R. (2008). An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Monthly Weather Review, 136(7), 2764-2785.
    51. Sansom, P. G., & Catto, J. L. (2022). Improved objective identification of meteorological fronts: a case study with ERA-Interim. Geoscientific Model Development Discussions, 1-19.
    52. DeMaria, M., & Kaplan, J. (1994b). Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. Journal of climate, 7(9), 1324-1334.
    53. Weather Home, Kochi University (n.d). GMS/GOES9/MTSAT Data Archive for Research and Education. Retrieved from http://weather.is.kochi-u.ac.jp/archive-e.html
    54. Meteorological Satellite Center of JMA. (n.d.). Himawari-8/9 Imager (AHI). Retrieved from https://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/spsg_ahi.html.
    55. Rios-Berrios, R., & Torn, R. D. (2017). Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Monthly Weather Review, 145(5), 1717-1738.
    56. Emanuel, K. A. (1988). The maximum intensity of hurricanes. J. Atmos. Sci, 45(7), 1143-1155.
    57. Lin, I. I., Rogers, R. F., Huang, H. C., Liao, Y. C., Herndon, D., Yu, J. Y., ... & Lien, C. C. (2021). A tale of two rapidly intensifying supertyphoons: Hagibis (2019) and Haiyan (2013). Bulletin of the American Meteorological Society, 102(9), E1645-E1664.
    58. National Oceanic and Atmospheric Administration Physical Sciences Laboratory. (2023). Multivariate ENSO Index Version 2 (MEI.v2). Retrieved from https://psl.noaa.gov/enso/mei/
    59. Picaut, J., Ioualalen, M., Menkès, C., Delcroix, T., & Mcphaden, M. J. (1996). Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274(5292), 1486-1489.
    60. Sitkowski, M., Kossin, J. P., & Rozoff, C. M. (2011). Intensity and structure changes during hurricane eyewall replacement cycles. Monthly Weather Review, 139(12), 3829-3847.
    61. Shimada, U., Owada, H., Yamaguchi, M., Iriguchi, T., Sawada, M., Aonashi, K., ... & Musgrave, K. D. (2018). Further improvements to the Statistical Hurricane Intensity Prediction Scheme using tropical cyclone rainfall and structural features. Weather and Forecasting, 33(6), 1587-1603.
    62. Tierra, M. C. M., & Bagtasa, G. (2023). Identifying the rapid intensification of tropical cyclones using the Himawari‐8 satellite and their impacts in the Philippines. International Journal of Climatology, 43(1), 1-16.
    63. DeMaria, M., & Kaplan, J. (1999). An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Weather and Forecasting, 14(3), 326-337.

    QR CODE
    :::