跳到主要內容

簡易檢索 / 詳目顯示

研究生: 司峇塔
BASTA SIMANULLANG
論文名稱: 在空間學習和記憶形成後對海馬迴中表觀遺傳修飾調控 miRNA 表現的研究研
The investigation of the epigenetic modification regulated mi-RNA induction in the hippocampus after spatial learning and memory formation
指導教授: 沈哲鯤
Dr. Che-Kun James Shen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 55
中文關鍵詞: 表觀遺傳mi-RNAs 誘導甲基化
外文關鍵詞: Epigenetic, mi-RNAs induction, Methylation
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行為是由環境刺激驅動的,這種刺激通過許多分子機制觸發大腦活動。學習和記憶的過程包括
    刺激誘導的海馬神經元之間的突觸連接的變化,其在長期的體細胞和情節記憶的形成中起關鍵作用。通
    過Morris 水迷宮實驗與RNA 的分析表明,在有學習和未學習的小鼠之間存在微小RNA 表達不同。屬
    於轉錄後調節因子的miR-466f-3p 在腦中大量表現且其在基因中位於一基因的內含子-10 中(Sfmbt2)。然
    而,宿主基因(sfmbt2)的mRNA 表現量與miR-466f-3p 顯著不同。表觀遺傳修飾,如DNA 甲基化可影
    響基因表達。5'Aza-dC,一個甲基轉移酶抑製劑,用於處理海馬迴原代培養神經元導致Bdnf,Nrf2 和Sfmbt2
    mRNA 與miR466f-3p 的表現量增加。根據實驗結果顯示,miR-466f 家族的啟動子區域中其甲基化模式
    在有學習和未學習的小鼠之間沒有顯著差異。證據表明,在Morris 水迷宮的應激下,DNA 甲基化的變化
    不直接參與誘導miR-466f-3p 在海馬依賴性空間學習和記憶形成的調節。


    Behavior is driven by environmental stimulation that triggers brain activity with lots of
    molecular mechanisms. The process of learning and memory contains stimulation-induced
    changes that happen in the synaptic connections between neurons in the hippocampus, which
    plays a pivotal role in the formation of long term somatic and episodic memories. By Morris
    water maze experiment and RNA analysis, we show that some micro-RNAs (miRNA) are
    expressed differently between learned and unlearned mice. One of the miRNAs, miR-466f-3p,
    which belongs to post transcriptional regulator, is abundantly express in brain and generated in
    the intron-10 of Sfmbt2 gene. However, the mRNA expression of Sfmbt2 is significantly
    different from miR-466f-3p. Inhibition of epigenetic modification, such as DNA methylation,
    can affect gene expression. Treatment of 5’Aza-dC, a methyltransferase inhibitor, to the
    hippocampal primary culture neuron causes Bdnf, Nrf2, Sfmbt2 mRNA and miR466f-3p
    expression increased. However, the methylation pattern in the promoter region of the miR-466f
    cluster is not significantly different between learned and unlearned mice. The evidence show
    that the changes of DNA methylation under the stress of the Morris water maze indirectly
    participate in the regulating of miR-466f-3p induction in the hippocampus-dependent spatial
    learning and memory formation.
    Keywords: Epigenetic, mi-RNAs induction, Methylation

    Table of Contents Abstract . i 中文摘要 ii Acknowledgement iii Table of Contents . iv List of Figures . vi List of Tables . vii Abbreviations .. viii Chapter 1 Introduction . 1 1.1. Learning and Memory . 1 1.2. Sfmbt2 host gene, miRNA cluster and memory formation .. 2 1.3. MicroRNA biogenesis . 2 1.4. Epigenetic modification .. 2 1.4.1. Methylation 3 1.4.2. 5’Aza-dC as a methytransferase inhibitor 3 1.4.3. Sodium Bisulfate Treatment 4 1.5. Research and Purposes 4 Chapter 2 Materials and Methods .. 6 2.1. Morris water maze task 6 2.2. Genomic DNA extraction .. 6 2.3. Bisulfate treatment . 6 2.4. Epi-tag PCR .. 7 2.5. Gel-PCR purification 8 2.6. Blunting and ligation 8 2.7. Transformation . 8 2.8. Colonies screening . 9 2.9. DNA mini preparation . 9 2.10. Sequencing analysis 10 2.11. Cell line culture . 10 2.12. Hippocampal primary culture 10 2.13. RNA purification . 11 2.14. Reverse transcriptase PCR (RT-PCR) 11 2.15. Polymerase chain reaction (PCR) 12 2.16. Quantitative polymerase chain reaction (Q-PCR) .. 12 2.17. MicroRNA RT-Q-PCR .. 13 Chapter 3 Results . 14 3.1. mRNA expression of Sfmbt2 is increase in N2a cell line under 5’Aza-dC treatment at a time-and dose-dependent manner 14 3.2. Sfmbt2 mRNA expression is increased in primary hippocampal neuron under 5’Aza-dC treatment in a time and dose dependent manner 14 3.3. Percentage of DNA methylation in some specific CpG sites are significantly different before and after training of C57BL/6J Wild-Type (WT) mice .. 15 3.4. DNA Methylation of F1 generation is hypomethylated compare to F0 in hippocampus.. 15 3.5. DNA methylation pattern in hippocampus of F1 mice before and after training 16 3.6. DNA methylation pattern in liver of F0 and F1 (LNxWT) mice before and after training .. 17 Chapter 4 Discussion . 18 Chapter 5 Conclusion 21 References .. 22

    REFERENCE
    [1] Nunez J. (2008). Morris Water Maze Experiment. DOI: 10.3791/897. URL:
    http://www.jove.com/index/Details.stp?ID=897
    [2] Vorhees CV and Williams MT. (2006). Morris water maze: procedures for assessing
    spatial and related forms of learning and memory. Nat Protoc. 2006; 1(2): 848–858.
    doi:10.1038/nprot.2006.116.
    [3] Barnhart CD., Yang D., and Lein PJ. (2015). Using the Morris Water Maze to Assess
    Spatial Learning and Memory in Weanling Mice. PLOS ONE|
    DOI:10.1371/journal.pone.0124521
    [4] Inoue et al., (2017). The Rodent-Specific MicroRNA Cluster within the Sfmbt2 Gene Is
    Imprinted and Essential for Placental Development. Cell Reports 19, 949–956.
    http://dx.doi.org/10.1016/j.celrep.2017.04.018
    [5] https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=353282
    [6] http://www.informatics.jax.org/marker/MGI:2447794
    [7] O'Brien J., Hayder H., Zayed Y., and Peng C. (2007). Overview of MicroRNA
    Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne).
    Doi: 10.3389/fendo.2018.00402
    [8] Day JJ and Sweatt JD. (2011). DNA methylation and Memory Formation. Nat
    Neurosci.2010 Nov; 13(11): 1319–1323. doi: 10.1038/nn.2666 P
    [9] Yang X., Shao X., Gao L. and Zhang S. (2016). Comparative DNA methylation analysis
    to decipher common and cell type-specific patterns among multiple cell types. Brief
    Funct Genomics. 2016 Nov;15(6):399-407. Epub 2016 Apr 23.
    [10] Ptak C., BScH., Petronis A. (2010). Basic research I Epigenetic approaches to
    psychiatric disorders. Dialogues Clin Neurosci. 2010;12(1):25-35.
    [11] Whalley K. (2007). Dynamic DNA methylation. Nature Reviews.
    Neuroscience volume8, page323 (2007)
    [12] Zhang Z et al., (2016). Effects of 5-Aza-20-deoxycytidine on expression of PP1g in
    learning and memory. Biomedicine & Pharmacotherapy 84 (2016) 277–283
    [13] Lister R et al., (2013). Global Epigenomic Reconfiguration During Mammalian Brain
    Development. Science. 2013 August 9; 341(6146): 1237905–1237905
    [14] Christman JK. (2002). 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA
    23
    methylation: mechanistic studies and their implications for cancer therapy. Oncogene
    (2002) 21, 5483 – 5495
    [15] Seelan RS et al., (2018). Effects of 5-Aza-2′-deoxycytidine (decitabine) on gene
    expression. Drug Metab Rev. 2018 May;50(2):193-207. doi:
    10.1080/03602532.2018.1437446.
    [16] Ovkvist CL et al., (2016). DNA methylation in human epigenomes depends on local
    topology of CpG sites. Nucleic Acids Research, 2016, Vol. 44, No. 11 5123–5132. Doi:
    10.1093/nar/gkw124
    [17] Darst RP. (2010). Bisulfite Sequencing of DNA. Curr Protoc Mol Biol. 2010 July;
    CHAPTER: Unit–7.917. Doi:10.1002/0471142727.mb0709s91
    [18] Li Y et al., (2019). DNA methylation, microRNA expression profiles and their
    relationships with transcriptome in grass-fed and grain-fed Angus Cattle rumen tissue.
    CC-BY 4.0 International license. doi: http://dx.doi.org/10.1101/581421
    [19] Li Y and Tollefsbol TO. (2011). DNA methylation detection: Bisulfite genomic
    sequencing Analysis. Methods Mol Biol. 2011; 791: 11–21.
    doi:10.1007/978-1-61779-316-5_2.
    [20] Zhou G., Xiong WX., Zhang XG., Ge SJ. (2013). Retrieval of Consolidated Spatial
    Memory in the Water Maze Is Correlated with Expression of pCREB and Egr1 in the
    Hippocampus of Aged Mice. Dement Geriatr Cogn Disord Extra 2013;3:39–47. DOI:
    10.1159/000348349
    [21] Tsuda M et al., (2002). Involvement of an Upstream Stimulatory Factor as Well as
    cAMP-responsive Element-binding Protein in the Activation of Brain-derived
    Neurotrophic Factor Gene Promoter I*. JBC Papers in Press, July 11, 2002, DOI
    10.1074/jbc.M204784200
    [22] Palacios D., Summerbell D., Rigby PWJ and Boyes J. (2010). Interplay between DNA
    Methylation and Transcription Factor Availability: Implications for Developmental
    Activation of the Mouse Myogenin Gene. MOLECULAR AND CELLULAR
    BIOLOGY, Aug. 2010, p. 3805–3815 Vol. 30, No. 15 0270-7306/10/$12.00
    doi:10.1128/MCB.00050-10
    [23] Saunderson EA et al., (2016). Stress-induced gene expression and behavior are
    controlled by DNA methylation and methyl donor availability in the dentate gyrus.
    4830–4835 | PNAS | April 26, 2016 | vol. 113 | no. 17
    24
    www.pnas.org/cgi/doi/10.1073/pnas.1524857113
    [24] Sherrin T et al., (2010). Hippocampal c-Jun-N-Terminal Kinases Serve as Negative
    Regulators of Associative Learning. The Journal of Neuroscience, October 6, 2010.
    30(40):13348 –13361
    [25] Heurteaux C., Messier C., Destrade and Lazdunski M., (1992). Memory processing and
    apamin induce immediate early gene expression in mouse brain. Molecular Brain
    Research, 3 (1993) 17-22
    [26] Miller CA and Sweatt JD. (2007). Covalent Modification of DNA Regulates Memory
    Formation. Neuron 53, 857–869, March 15, 2007 a2007 Elsevier Inc. DOI
    10.1016/j.neuron.2007.02.022
    [27] Zenk F et al., (2017). Germ line–inherited H3K27me3 restricts enhancer function during
    maternal-to-zygotic transition. Science 357, 212 –216 (20 17).
    http://science.sciencemag.org/
    [28] Anway MD. (2006). Endocrine Disruptor Vinclozolin Induced Epigenetic
    Transgenerational Adult-Onset Disease. Endocrinology 147(12):5515–5523. doi:
    10.1210/en.2006-0640
    [29] Chen Q et al., (2016). Sperm tsRNAs contribute to intergenerational inheritance of an
    acquired metabolic disorder. SCIENCE sciencemag.org 22 JANUARY 2016 • VOL 351
    ISSUE 6271. http://science.sciencemag.org/
    [30] Fischer C et al., (2004). Activating Transcription Factor 4 Is Required for the
    Differentiation of the Lamina Propria Layer of the Vas Deferens1. BIOLOGY OF
    REPRODUCTION 70, 371–378 (2004). DOI 10.1095/biolreprod.103.021600
    [31] Hajkova P et al., (2002). Epigenetic reprogramming in mouse primordial germ cells.
    Mechanisms of Development 117 (2002) 15–23. PII: S0925-4773(02)00181-8
    [32] Huypens P et al., (2016). Epigenetic germline inheritance of diet-induced obesity and
    insulin resistance. Nature Genetics VOLUME 48 | NUMBER 5 | MAY 2016.
    doi:10.1038/ng.3527
    [33] Chen Z et al., (2017). Impaired learning and memory in rats induced by a high-fat diet:
    Involvement with the imbalance of nesfatin-1 abundance and copine 6 expression.
    Journal of Neuroendocrinology. 2017; 29:1–12. DOI: 10.1111/jne.12462

    QR CODE
    :::