跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃柏文
Bo-Wen Huang
論文名稱: 模擬遮罩式陣列槽微電化學加工的二維電場耦合熱流場
The Numerical Simulation of Groove Arrays by Through-Mask Electrochemical Drilling Considering Electric and Thermal-Fluid Effects.
指導教授: 洪勵吾
Lih-Wu Hourng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 217
中文關鍵詞: 陣列槽遮罩式電化學微加工輸入電壓輸入流速非均勻性
外文關鍵詞: groove arrays, through-mask electrochemical micromachining, voltage, flow rate, non-uniformity
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鑑於遮罩式電化學微加工的研究,在實驗方面無法詳述結果的成因,而模擬方面大多僅考慮單一個物理場和加工目標,而考慮多物理場者,又嚴重低估焦耳熱的影響。所以本次研究以陣列槽為觀測對象,並對焦耳熱進行修正,從而模擬TMEMM之二維的電場耦合熱流場以詳細分析加工的結果。
      由模擬結果得知,若輸入電壓較高,則加工速度較快、過切較差,而蝕刻因子變化不大。當輸入電壓的提升,對加工表面的溫度影響較小,而對預設加工槽區域的溫度影響較大。
      若輸入流速較快,則加工速度較慢、過切較小、加工輪廓較對稱、散熱效果較好,蝕刻因子變化不大。當輸入流速達到 9 m⁄s 時,繼續加快輸入流速,對幫助加工區域散熱與改善加工輪廓的對稱性的效果都不大明顯。
      陣列槽加工中,如果加工槽距離工件中心越遠,則其加工速度越快、底切越差,而蝕刻因子變化不大;距離工件中心相等距離的加工槽,位於下游者,相較於上游的加工槽,其加工速度較快、底切較差。而造成陣列槽加工的非均勻性之主要原因為邊緣效應使電場強度分布不均所導致。


    In view of the research of through mask electrochemical micromachining, it is impossible to detail the cause of the results in the experimental, while most of the simulations only consider a single physical field and machining target, while considering the multiphysics, the effect of Joule heat is seriously underestimated.
    Therefore, this research uses the groove arrays as the observation object and corrects the Joule heat to simulate the two-dimensional electric field coupled heat flow field of TMEMM to analyze the machining results in detail.
    It is known from the simulation results that if the input voltage is higher, the machining speed is faster, the overcut is poorer, and the etch factor does not change much. When the input voltage is increased, the temperature of the machined surface is less affected, but the temperature of the preset machining groove area is greatly affected.
    If the input flow rate is faster, the machining speed is slower, the undercut is smaller, the machining profile is more symmetrical, and the heat dissipation effect is better, and the etch factor does not change much. When the input flow rate reaches 9 m⁄s, the input flow rate continues to increase, which is less effective in helping the machining area to dissipate heat and improve the symmetry of the machining profile.
    The machining groove at the same distance from the center of the workpiece, the machining groove located downstream has a faster machining speed and a lower undercut than the upstream machining groove, and the etch factor does not change much. The main reason for the non-uniformity of the groove arrays machining is that the edge effect causes the uneven distribution of the electric intensity.

    摘要 i Abstract ii 銘謝 iv 目錄 v 表目錄 x 圖目錄 xi 符號說明 xiv 一、 緒論 1 1-1 前言 1 1-2 微機電系統 1 1-3 電化學微加工 2 1-4 文獻回顧 4 1-5 研究目的 7 二、 基礎理論 9 2-1 何謂電化學加工 9 2-2 法拉第電解定律(Faradays Laws of Electrolysis) 10 2-3 電阻率與電導率 10 2-4 電流密度與電流效率 11 2-5 歐姆定律(Ohms law) 11 2-6 焦耳定律(Joules law) 12 2-7 熱導率與熱阻 13 2-8 複合熱阻(Composite thermal insulance) 14 2-9 傅立葉定律(Fouriers law) 14 2-10 吉布斯自由能(Gibbs free energy) 15 2-11 能斯特方程式(Nernst equation) 16 2-12 電功(Electric power) 16 2-13 水力半徑與水力直徑 17 2-14 雷諾數 17 2-15 底切與蝕刻因子 18 三、 數值分析 19 3-1 研究規劃 19 3-2 模型幾何 20 3-2-1 模型簡化 20 3-2-2 預設陽極 21 3-2-3 模型尺寸 21 3-3 控制參數與電解液性質 22 3-4 電場 23 3-4-1 輸入電壓 23 3-4-2 統御方程式 23 3-4-3 邊界條件 24 3-5 流場 25 3-5-1 流態 25 3-5-2 紊流模型 25 3-5-3 壓縮性 26 3-5-4 入口流速 26 3-5-5 統御方程式 27 3-5-6 邊界條件 31 3-6 熱場 31 3-6-1 體積熱源 31 3-6-2 邊界熱通量 32 3-6-3 統御方程式 33 3-6-4 邊界條件 35 3-7 陽極的加工表面 36 3-7-1 實際材料移除率(Actual material removal rate) 36 3-7-2 網格變形 37 3-7-3 網格平滑方式 38 3-7-4 邊界移動 38 3-8 研究流程 39 四、 結果與討論 41 4-1 收斂性測試 42 4-1-1 獨立性測試 43 4-1-2 穩定性測試 46 4-2 模型設定的驗證 46 4-2-1 垂直於平面的厚度 47 4-2-2 相對介電係數 48 4-2-3 相對公差 48 4-3 探討忽略陽極氧化反應熱的合理性 49 4-3-1 陽極氧化反應熱 49 4-3-2 證明 51 4-4 不同輸入電壓的陣列槽在不同加工時間的加工品質 52 4-5 不同輸入流速的陣列槽在不同加工時間的加工品質 53 4-6 輸入電壓和輸入流速對場域分布的影響 53 4-6-1 電場強度的分布 54 4-6-2 流速的分布 55 4-6-3 溫度的分布 56 4-7 輸入電壓和輸入流速對加工區域的最大溫度的影響 57 4-8 輸入電壓對加工的影響 58 4-9 輸入流速對加工的影響 61 4-10 陣列槽加工的非均勻性探討 63 五、 結論 67 5-1 結論 67 5-2 未來展望 68 六、 參考文獻 69 表附錄 73 圖附錄 102

    [1]Xiaolei Chen, Ningsong Qu, Hansong Li, Zhengyang Xu, ”Pulsed electrochemical micromachining for generating micro-dimple arrays on a cylindrical surface with a flexible mask,” Applied Surface Science, volume 343, pp 141-147, 2015.
    [2]Xiaolei Chen, Ningsong Qu, Xiaolong Fang, Di Zhu, “Reduction of undercutting in electrochemical micro-machining of micro-dimple arrays by utilizing oxygen produced at the anode,” Surface & Coatings Technology, volume 277, pp 44-51, 2015.
    [3]Xiaolei Chen, Ningsong Qu, Hansong Li, Zhongning Guo, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining, Precision Engineering, volume 39, pp 204-211, 2015.
    [4]Guoqian Wang, Hansong Li, Ningsong Qu, Di Zhu, “Investigation of the hole-formation process during double-sided through-mask electrochemical machining,” Journal of Materials Processing Technology, volume 234, pp 95-101, 2016.
    [5]Xiaolei Chen, Ningsong Qu, Hansong Li, Zhengyang Xu, “Electrochemical micromachining of micro-dimple arrays using a polydimethylsiloxane (PDMS) mask,” Journal of Materials Processing Technology, volume 229, pp 102-110, 2016.
    [6]Hansong Li, Guoqian Wang, Ningsong Qu, Di Zhu, “Through-mask electrochemical machining of a large-area hole array in a serpentine flow channel,” The international Journal of advanced Manufacturing Technology, volume 89, pp 933-940, 2017.
    [7]Guoqian Wang, Hansong Li, Ningsong Qu, Di Zhu, ”Improvement of electrolyte flow field during through-mask electrochemical machining by changing mask wall angle,” Journal of Manufacturing Processes, volume 25, pp 246-252, 2017.
    [8]Xiaolei Chen, Ningsong Qu, Zhibao Hou, “Electrochemical micromachining of micro-dimple arrays on the surface of Ti-6Al-4V with NaNO_3 electrolyte,” The International Journal of Advanced Manufacturing Technology, volume 88, pp 565-574, 2017.
    [9]Guoqian Wang, Di Zhu, Hansong Li, “Fabrication of semi-circular micro-groove on titanium alloy surface by through-mask electrochemical micromachining,” Journal of Material Processing Tech, volume 258, pp 22-28, 2018.
    [10]Xiaolei Chen, Bangyan Dong, Chuanyun Zhang, Ming Wu, Zhongning Guo, “Jet electrochemical machining of micro dimples with conductive mask,” Journal of Material Processing Tech, volume 257, pp 101-111, 2018.
    [11]Yan Shen, Yutao Lv, Bin Li, Ruoxuan Huang, Baihong Yu, Weiwei Wang, Chengdi Li, Jiujun Xu, “Reciprocating electrolyte jet with prefabricated-mask machining micro-dimples arrays on cast iron cylinder liner,” Journal of Material Processing Tech, volume 266, pp 329-338, 2019.
    [12]陳千蕙,「移動刀具之遮罩式微電化學加工與分析」,中央大學機械系,碩士論文,2016。
    [13]Davis R. Lide, “CRC Handbook of Chemistry and Physics,” 85th Edition, CRC press, 2004.
    [14]Toshiaki Isono, “Density, Viscosity, and Electrolytic Consuctivity of Concentrated Aqueous Electrolyte Solutions at Several Temperatures. Alkaline-Earth Chlorides, LaCl_3, Na_2 SO_4, NaNO_3, NaNO_4, NaBr, KNO_3, KBr, and 〖Cd(NO_3)〗_2,” Journal of Chemical and Engineering Data, volume 29 ,pp 45-52, 1984.
    [15]田福助,「電化學─理論與應用─」,高立圖書有限公司,1996。
    [16]Alexey Ivanov, “Simulation of Electrochemical Etching of Silicon with COMSOL,” COMSOL Conference in Suttgart, 2011.
    [17]李碩仁,「COMSOL在電化學的應用」,COMSOL CONFERENCE Taipei, 2013。
    [18]徐泰然,「微機電系統與微系統─設計與製造」,高立圖書有限公司,2003。
    [19]范智文,「利用電化學加工製作微電極和微孔之研究與分析」, 中央大學機械系,博士論文,2010。
    [20]陳泓悅,「熱流場對靜態刀具遮罩式微電化學加工的影響性」, 中央大學機械系,碩士論文,2017。
    [21]林宏霖,「三維流場對不同形式電化學微加工之影響」,中央大學機械系,碩士論文,2018。
    [22]COMSOL, “AC/DC Module,” User’s Guide, version 5.4.
    [23]COMSOL, “CFD Module,” User’s Guide, version 5.4, pp.51-251.
    [24]COMSOL, “Heat transfer Module,” User’s Guide, version 5.4.
    [25]COMSOL, “COMSOL Multiphysics,” Reference Manual, version 5.4, pp.1019-1044.

    QR CODE
    :::