跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林育緯
Yu-wei Lin
論文名稱: 利用四極柱質譜儀與光放射光譜儀進行非晶矽薄膜於ECR-CVD之電漿診斷研究
指導教授: 利定東
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 電漿質譜儀薄膜電子迴旋共振化學氣相沉積光放射光譜儀
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用光放射光譜儀(OES)監測電漿物種變化,四極柱質譜儀(QMS)監測物種濃度,於電子迴旋共振化學氣相沉積製備非晶矽薄膜之製程。調變的參數為微波功率密度、製程壓力、磁場共振位置、氫稀釋濃度比並輔以FTIR、Detak、E-gun來探討薄膜的結構特性,以少數載子生命週期和微結構因子判斷薄膜品質的好壞。最後將電漿特性與薄膜特性相互比較,以期建構電漿診斷平台。
    本研究綜合各參數所推測的良好薄膜品質的參數去成長,藉由光敏感度、R*得知在磁場組態40/12/22 A 、功率密度 1.5 W/cm2、工作壓力10 mTorr其光敏感度達 〖2x10〗^3。由OES量測之Si*/SiH*可作為電子溫度指標。QMS所量測之SiH2/SiH3可做為預測薄膜品質趨勢之方法。
    本研究整合OES和QMS,使用SiH2/SiH3為薄膜品質之指標並將Si*/SiH*作為電子溫度指標。最後,以沉積非晶矽薄膜為例,解析ECR電漿沉膜機制。並可利用此結論,在尚未成長薄膜前,就先行營造出有利成長良好特性的薄膜生長環境,藉此減少製程之試誤時間。


    In this study, OES (Optical emission spectrometer), and QMS (Quadrupole mass spectrometry) were utilized as plasma diagnostics tools and a-Si:H (Hydrogenated amorphous silicon ) thin film was deposited by electron cyclotron resonance chemical vapor deposition (ECR-CVD). QMS and OES were used to identify active species in the plasma. The film quality such as microstructure fraction (R*), hydrogen content (CH), deposition rate, and lifetime were investigated by FT-IR, Detak and E-gun. The relationship between the film quality and plasma characteristics with varying process parameters (microwave power density, working pressure, magnetic field resonance position, and dilution ratio) was discussed.
    The research collects all the parameter to predict the good quality of film. It uses the photosensitivity, microstructure fraction (R*) that can obtain the photosensitivity 〖2x10〗^3 under the conditions of magnitude 40/12/22 A, power density 1.5 W/cm2 and working pressure 10 mTorr.
    Consequently, the research integrates the OES and QMS for using SiH2/SiH3 as the index of predicting quality of film and takes Si*/SiH* as the index of electron temperature. By depositing amorphous silicon thin film, it analyzes the mechanisms of ECR plasma and the research results can be used for creating the good environment for depositing film that can reduce the try and error of process time.  

    碩博士論文電子檔授權書 ii 論文指導教授推薦書 iii 口試委員審定書 iv 摘要 v Abstract vi 誌謝 vii 目錄 viii 圖目錄 x 表目錄 xii 第一章 緒論 1 1-1前言 1 1-2 研究動機及目的 3 第二章、文獻整理與基本回顧 5 2-1 電漿簡介 5 2-1-1 電漿原理 5 2-1-2 電漿特性 8 2-1-3 電子迴旋共振電漿 9 2-2 薄膜沉積 11 2-2-1 薄膜沉積原理 11 2-2-2 化學氣相沉積(CVD) 13 2-3 氫化非晶矽薄膜(α-Si:H) 15 2-4 電漿診斷系統 19 2-4-1 光放射光譜儀 19 2-4-2 四極柱質譜儀(QMS) 20 第三章、實驗方法與設備 23 3-1 實驗流程 23 3-2 實驗步驟 24 3-2-1 參數設定 24 3-2-2 實驗流程 26 3-3 實驗設備及原理 27 3-3-1 電子迴旋共振氣相沉積系統(ECR-CVD) 27 3-3-2 光放射光譜儀OES 31 3-3-3 四極柱質譜儀 33 3-3-4 傅氏轉換紅外線光譜儀(FTIR) 35 3-3-5 表面輪廓儀(Detek) 37 第四章、結果與討論 39 4-1 功率密度/工作壓力/氫稀釋比/磁場組態下SiH2/SiH3 41 4-1-1 功率密度與微結構因子的關係 41 4-1-2工作壓力與電漿組成SiH2/SiH3和微結構因子的關係 43 4-1-4 氫稀釋比(H2SiH4)與電漿組成SiH2/SiH3和微結構因子的關係 47 4-2 良好薄膜的參數預測 50 4-2-1功率密度和工作壓力變化對SiH2/SiH3 50 4-2-2 磁場組態和氫稀釋比的變化對SiH2/SiH3 53 4-3 優化薄膜參數 56 4-3-1各薄膜參數對薄膜品質的影響 58 第五章、結論 60 參考文獻 62

    [1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
    [2]National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
    [3]Kenta Arima, Takushi Shigetoshi, Hiroaki Kakiuchi, Mizuho Morita, “Surface photovoltage measurements of intrinsic hydrogenated amorphous Si films on Si wafers on the nanometer scale”, Physica B, Vol 376–377, pp. 893–896, 2006.
    [4]Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
    [5]蕭宏(Hong Xiao)著,半導體製程技術導論 修訂版,羅正忠譯,台北市,台灣培生教育,民國98年。
    [6]羅正忠,半導體製程技術導論,歐亞出版社,2006年。
    [7]I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
    [8]Wiki:http://zh.wikipedia.org/zh-tw/%E7%A3%81%E5%A0%B4
    [9]M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
    [10] J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984
    [11]H. Fritzsche, M. Tanielian, C. C. Tsai, and P. J. Gaczi., “Hydrogen content and density of plasma-deposited amorphous silicon-hydrogen”, J. Appl. Phys., Vol. 50, pp.3366-3370, 1979.
    [12]J. Robertson, J. Appl. Phys. Vol. 87, pp. 2608-2617, 2000.
    [13]葉志鎮 等 編著,半導體薄膜技術與物理,浙江大學出版社,2008年
    [14]張濟忠,現代薄膜技術,冶金工業出版社,2009年。
    [15]王增福,實用鍍膜技術,電子工業出版社,2008年。
    [16] A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells , Vol.78, pp.3-26, 2003.
    [17]A. Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
    [18]Y. Ruohe, L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, Journal of Shantou University, Vol. 13, pp. 16- 19, 1997.
    [19] M. J. Kushner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J.J.A.P., Vol 62, pp. 2803–2811, 1987.
    [20]M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
    [21]Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azumab, H. Shirai, “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
    [22]A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials & Solar Cells, Vol 78, pp. 3–26, 2003.
    [23]P. Kumar, F. Zhu, and A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
    [24]K. Saito, and M. Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, Phys. Status Solidi A, Vol 207, pp. 535–538, 2010.
    [25]S. K. Ram, L. Kroely, S. Kasouit, P. Bulkin, and P. Roca , “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi, Vol 7, pp. 553–556, 2010.
    [26] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, Journal Of Physics D: Applied Physics., Vol. 42, No.3, 2008.
    [27] P. Horváth,“Mass spectroscopic and optical studies of radiofrequency SiH4 and H2-SiH4 plasmas”,Roland Eötvös University,PhD,2007..
    [28] R.K. Janev and D. Reiter, “Collision processes of Hydride species in Hydrogen plasmas: III. The Silane family”, Contrib. Plasma Phys., Vol. 43, pp. 401-417, 2003.
    [29] M. Goto, H. Toyoda, M. Kitagawa, T. Hirao, and H.Sugai, “low temperature growth of amorphous and polycrystalline silicon films from a modified inductively coupled plasma”, Jpn. J. Appl. Phys., Vol. 36, pp. 3714~3720, 1997.
    [30] S. Xu, X. Zhang, Y.Li, S. Xiong, X. Geng, and Y. Zhao, “Improve silane utilization for silicon thin film deposition at high rate”, Thin Solid Film, Vol. 520, pp. 694-696, 2011.
    [31] T. Moiseev, D. Chrastina, and G. Isella, “Plasma Composition by Mass Spectrometry in a Ar-SiH4-H2 LEPECVD Process During nc-Si Deposition”, Plasma Chem. Plasma Process, Vol. 31, pp. 154-174, 2011.
    [32] D. C. Marra, W. M. M. Kessels, M. C. M. van de Sanden, K. Kashefizadeh , and E. S. Aydila, “In situ infrared study of the role of ion flux and substrate temperature on a-Si:H surface composition”, J. Vac. Sci. Technol. A., Vol. 20, pp. 781-793, 2002.
    [33] W. M. M. Kessels, M. C. M. van de Sanden, and D. C. Schram, “Film growth precursors in a remote SiH4 plasma used for high rate deposition of hydrogenated amorphous silicon”, J. Vac. Sci. Technol. A., Vol. 18, pp. 2153- 2166, 2000.
    [34] W. M. M. Kessels, M. G. H. Boogaarts, J. P. M. Hoefnagels, M. C. M. van de Sanden, and D. C. Schram,“Improvement of hydrogenated amorphous silicon properties with increasing contribution of SiH3 to film growth”, J. Vac. Sci. Technol. A., Vol. 19, pp. 1007- 1011, 2001.
    [35] W. M. M. Kessels, C. M. Leewis, M. C. M. van de Sanden, and
    D. C. Schram,“Formation of cationic silicon clusters in a remote silane plasma and their contribution to hydrogenated amorphous silicon film growth”, J. Vac. Sci. Technol. A., Vol. 17, pp. 1531- 1545, 1999.
    [36] S. E. Lassig and J. D. Tucker, “Intermetal dielectric deposition by electron cyclotron resonance chemical vapor deposition (ECR CVD)”, Microelectronics Journal, Vol. 26, pp. 8-22, 1995.
    [37] P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J.
    Desmaison, and C. Dong, “Microwave Plasma Enhanced CVD of Aluminum
    Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films,
    Vol 390, pp. 51–58, 2001.
    [38] A. Francis, U. Czarnetzki, H. F. Döbele, and N. Sadeghi, “Quenching of the
    750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”,Appl. Phys. Lett., Vol 71, pp. 3796, 1997.
    [39]潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之
    應用」,私立中原大學,碩士論文 ,2008年。
    [40] M. Wakaki, K. kudo and T. Shibuya,光學材料手冊(Physical Properties and Data of Optical Materials),周海憲、程云芳,化學工業出版社,2010年。
    [41] Hiden PSM操作手冊。
    [42] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, “Amorphous silicon solar cells deposited at high growth rate”,Journal Non-Crystalline Solids, Vol. 299, pp. 1116–1122, 2002.
    [43] S. Guha, J. Yang, Scott J. Jones, Y. Chan and D.L. Williamson, “Effect of
    microvoids on initial and lightdegraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol. 61, pp. 1444, 1992.
    [44] Ashfaqul I. Chowdhury, Tonya M. Klein, Timothy M. Anderson, and Gregory N. Parsons, “Silane consumption and conversion analysis in amorphous silicon and silicon nitride plasma deposition using in situ mass spectroscopy”, JVSTA., Vol 16, pp. 1852, 1998
    [45] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503, 2007.
    [46] S. Bowden, V. Yelundur and A. Rohatgi, “Implied-Voc and Suns-Voc measurements in multicrystalline solar cells”, Conference Record of the Twenty-Ninth IEEE, pp. 371-374, 2002.

    QR CODE
    :::