| 研究生: |
黃雅若 Ya-Jo Huang |
|---|---|
| 論文名稱: | Bayesian Optimization for Hyperparameter Tuning with Robust Parameter Design |
| 指導教授: |
樊采虹
Tsai-Hung Fan 張明中 Ming-Chung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 類神經網路 、超參數優化 、貝氏優化 、穩健參數設計 |
| 外文關鍵詞: | expected improvement, robust parameter design |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在機器學習領域中,超參數調整對於深度學習演算法來說是一個很重要的步驟,不同的超參數設定可以直接影響模型效能。而貝氏優化一直是超參數調整的熱門方法,貝氏優化利用迭代的方式,不斷更新先驗與後驗分佈來找出最佳超參數組合。本研究利用貝氏優化與穩健參數設計的概念,提出了一種新的超參數優化方法。在優化過程中,該方法將控制因子及噪音因子(例如:初始權重、訓練樣本的選取)納入考量,以期提高求得最佳超參數組合之準確度。在模擬及實證例子中,依據不同類型的問題,發現所提出的方法會比傳統貝氏優化方法找到更接近真實超參數組合的設定。
Tuning hyperparameters is crucial to the success of deep learning algorithms because it affects the model performance directly. Therefore, hyperparameter tuning has received great attention. Bayesian optimization has always been a popular option for hyperparameter tuning, which obtains optimal values of hyperparameters in a sequential manner. This thesis presents a new hyperparameter optimization method using the concept of robust parameter design. We identify several noise factors (e.g, initial weights or random splitting training samples) for optimization. Simulations show that the proposed method can find hyperparameter settings that are closer to the real hyperparameter setting.
Garrido-Merchán, E.C. and Hernández-Lobato, D. (2020). Dealing with Cate-
gorical and Integer-valued Variables in Bayesian optimization with Gaussian Processes,
Neurocomputing, 380(7), 20-35.
Greenhill, S., Rana, S., Gupta, P., Vellanki, P., and Venkatesh, S. (2020).
Bayesian optimization for Adaptive Experimental Design: A Review, IEEE Access, 8,
13937-13948.
Hertel, L., Baldi, P., and Gillen, D.L. (2021). Reproducible Hyperparameter
optimization, Computational and Graphical Statistics, 31, 84-99.
Johnson, Richard A. and Wichern, Dean W. (2007). Applied Multivariate Statis-
tical Analysis, Pearson, 149-208.
Joseph, V.R. and Delaney, J.D.(2007). Functionally Induced Priors for the Analysis
of Experiments, Technology, 49, 1-11.
Khaw, J.F.C., Lim, B.S., and Lim, L.E.N. (1995). Optimal design of neural networks
using the Taguchi method, Neurocomputing, 3(7), 225–245.
Kim, Y.S. and Yum, B.J. (2004). Robust design of multilayer feedforward neural net-
works: an experimental approach, Engineering Applications of Artificial Intelligence,
17(3), 249-263.
Luong, P., Gupta, S., Nguyen, D., Rana, S., and Venkatesh, S. (2019). Bayesian
optimization with Discrete Variables, In Australasian Joint Conference on Artificial
Intelligence, 473-484.
Midilli, Y.E. and Elevli, S. (2019). Optimization of Neural Networks with Response
Surface Methodology: Prediction of Cigarette Pressure Drop, 60th International Scien-
tific Conference on Information Technology and Management Science of Riga Technical
University (ITMS).
Murugan, P. (2017). Hyperparameters optimization in Deep Convolutional Neural Net-
work / Bayesian Approach with Gaussian Process Priors, arXiv:1712.07233.
Nazghelichi, T., Aghbashlo, M., and Kianmehr, M.H. (2011). Optimization of
an artificial neural network topology using coupled response surface methodology and
genetic algorithm for fluidized bed drying, Computers and Electronics in Agriculture,
75(1), 84-91.
Packianather, M.S., Drake, P.R., and Rowlands, H. (2000). Optimizing the
parameters of multilayered feedforward neural networks through Taguchi design of ex-
periments, Quality and Reliability Engineering International, 16(6), 461-473.
Sato, R., Tanaka, M., and Takeda, A. (2021). A Gradient Method for Multilevel
optimization, NeurIPS, arXiv:2105.13954.
Sukthomya, W. and Tannock, J. (2005). The training of neural networks to model
manufacturing processes, Journal of Intelligent Manufacturing, 16(1), 39-51, 16, 39-51.
Sukthomya, W. and Tannock, J. (2005). The optimization of neural network param-
eters using Taguchi’s design of experiments approach-an application in manufacturing
process modelling, Neural Computing and Applications, 14,337-344.
Santner, Thomas J., Williams, Brian J., and Notz, William I. (2003). The
Design and Analysis of Computer Experiments, Springer, 216-225.
Tsai, J.-T., Chou, J.-H., and Liu, T.-K. (2006). Tuning the Structure and Parame-
ters of a Neural Network by Using Hybrid Taguchi-Genetic Algorithm, IEEE Transac-
tions on Neural Networks, 17(1), 69-80.
Tarik, M.H.M., Omar, M., Abdullah, M.F., and Ibrahim, R. (2018). Optimiza-
tion of Neural Network Hyperparameters for Gas Turbine Modeling Using Bayesian
optimization, 5th IET International Conference on Clean Energy and Technology
(CEAT2018), 1-5.
Wang, L., Dernoncourt, F., and Bui, T. (2020). Bayesian optimization for Selecting
Efficient Machine Learning Models, CIKM MoST-Rec Workshop.
Yangi, S.M. and Lee, G.S. (1999). Neural Network Design by Using Taguchi Method,
Journal of Dynamic Systems, Measurement, and Control, 121(3), 560-563.
Zhang, X., Chen, X., Yao, L., Ge, C., and Dong, M. (2019). Deep Neural
Network Hyperparameter optimization with orthogonal array tuning, Conference on
Neural Information Processing,287–295.