| 研究生: |
李惟宇 Wei-Yu Li |
|---|---|
| 論文名稱: |
NIR DOT光電量測系統於解調校正之研究 |
| 指導教授: |
潘敏俊
Min-Chun Pan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 擴散光學斷層掃描 、頻域式量測系統 、解調變 、PMT控制電壓校正 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近紅外光擴散光學斷層掃描(near-infrared diffuse optical tomography, NIR-DOT)系統乃一新穎之醫學造影方式,其架構可區分為光電量測與影像重建兩部分,本研究改善頻域式近紅外光擴散光學量測系統,以獲得有效的光強度與相位差資訊。在雷射穿透待測物後,以中性密度及紅外干涉濾光片過濾多餘之光功率,透過光電倍增管(Photomultiplier tube, PMT)接收並經光電轉換至為電訊號,後續藉由混波器解調變得到光功率大小及相位落後訊息。
為了善用PMT不同控制電壓的有效動態量測範圍,研究中以LabVIEW®軟體即時調整PMT之控制電壓,將其由先前固定電壓改為因應不同PMT接收光功率而自動調整控制電壓;此外,另進行不同控制電壓之光功率大小及相位校正,如此可大幅提高量測範圍並增加量測資訊有效性。
設計液態假體作有效性驗證,包含不同假體大小、吸收及散射係數等,模擬實際生理組織狀態,根據進入PMT光功率大小使用固定或不同ND減光片,並以20及60 MHz之調變光源進行實驗。經由測試,80 mm之假體以固定控制電壓量測時,當光纖與液態光導管夾角為67.5°即飽和;以自動調整控制電壓量測時,可在夾角小至22.5°時飽和。
本研究所提出之PMT自動調整控制電壓方法,可增加PMT有效量測範圍,藉由不同吸收及散射係數之假體和調變頻率等實驗參數設定,建立輸出訊號之幅值與相位校正式,以使PMT之光電檢測應用更為良善。
Near-infrared diffuse optical tomography (NIR DOT) is a new non-invasive and non-radiation biomedical imaging technique, and can be divided into two parts including opto-electrical measurement system and image reconstruction scheme. In this study, we improved frequency-domain (FD) opto-electrical measurement system to acquire both amplitude and phase information that are essential in image reconstruction computation. During the imaging procedure, NIR light through fibers illuminates a phantom, and neutral density (ND) filter, infrared band-pass interference (IR) filter are used to attenuate and filter out the unwanted light. Then the filtered light is detected and transformed into electrical signal by a photomultiplier tube (PMT). Eventually, the amplitude and phase information are computed through the demodulation of mixers and spectral analysis.
In order to effectively use the dynamic measurement range of a PMT with different control voltage, we improved the FD measurement system, previously using constant PMT control voltage, by auto-adjusting control voltage according to the received light power. Meanwhile, the correction of power amplitude and phase delay corresponding to variant PMT control voltage was performed to ensure the acquired data in an effective range.
Designated liquid phantoms that mimic the bio-tissue were used for justifying the proposed method. The design parameters of phantoms include size, optical absorption and scattering coefficients. Moreover, measurement was performed with using fixed or varying ND filter, and at different modulation frequency (20 and 60 MHz). Results show that the saturation of PMT occurs at source-detection angle below 67.5° when constant control voltage was used to measure Φ-80mm phantom, and limits to 22.5° while even using auto-adjusting control voltage.
The proposed method of auto-adjusting PMT control voltage in the study can fully utilizes the dynamic range of the PMT. According to the designated phantoms (different optical coefficients and size of the phantom), and the modulation frequency adopted, amplitude- and phase- correction functions can be established and employed for the improvement of NIR FD opto-electrical measurement system.
[1] 衛生福利部國民健康署,民國100年癌症登記報告。
http://www.hpa.gov.tw/BHPNet/Web/Stat/StatisticsShow.aspx?No=201404160001
[2] 衛生福利部統計處,民國100年醫療統計年報。
http://www.mohw.gov.tw/cht/DOS/Statistic_P.aspx?f_list_no=312&fod_list_no=2657&doc_no=13275
[3] B. Brooksby, “Combined near-infrared tomography and MRI to improve breast tissue chromophore and scattering assessment,” Ph.D. (Dartmouth College, Hanover NH, 2005)
[4] 葉偉成, “研究如何有效的管理以提早發現不易診斷的緻密性早期乳癌,” 衛生福利部南投醫院影像醫學部 (2014)。
[5] B. W. Pogue, T. O. McBride, U. L. Osterberg and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Optics Express, Vol. 4, No. 8, pp. 270-286 (1999).
[6] S. J. Madsen, Z. Yuan and H. Jiang, Optical Methods and Instrumentation in Brain Imaging and Therapy, Springer Science+Business Media New York (2013).
[7] E. Gratton and M. Limkeman, “A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution,” Biophysical Society, Vol. 44, pp. 315-324 (1983).
[8] J. Fishkin, E. Gratton, M. J. vandeVen, Mantulin and W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” SPIE, Vol. 1431, pp. 122-135 (1991).
[9] F. El-Ghussein, M. A. Mastanduno, S. Jiang, B. W. Pogue and K. D. Paulsen, “Signal-to-noise and acquisition duration improvements for a hybrid-PMT & photodiode-based multiwavelength diffuse optical tomography system,” SPIE, Vol. 8578, pp. 1-6 (2013).
[10] T. O. Mcbridge, B. W. Pogue, S. Jiang, U. L. Österberg and K. D. Paulsen, ”A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” AIP, Vol. 3, No. 3, pp. 1817-1824 (2001).
[11] M. A. Mastanduno, S. Jiang, R. DiFlorio-Alexander, B. W. Pogue and K. D. Paulsen, “Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy,” Biomedical Optics Express, Vol. 3, No. 10, pp. 2339-2352 (2012).
[12] L. V. Wang and H. I. Wu, Biomedical optics: principles and imaging, John Wiley and Sons, Inc., New Jersey (2007).
[13] V. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis, 2nd edition, SPIE Press, Bellingham, Washington, USA (2007).
[14] R. Nave , Rayleigh and Mie scattering of incident light,
http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html
[15] Health Library Johns Hopkins Medicine,
http://www.hopkinsmedicine.org/
[16] Paul Beard, “Biomedical Photoacoustic Imaging,” Interface Focus, The Royal Society, pp. 1-30 (2011).
[17] S. Mallidi, G. P. Luke and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol, pp. 213-221 (2011).
[18] B. J. Tromberg, A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, A. J. Berger, J. Butler and R. F. Holcombe, “Functional diffuse optical spectroscopy of human breast tissue,” The 14th Annual Meeting of the IEEE, Vol. 1, pp. 259-260 (2001).
[19] V. G. Peters, D. R. Wymant, M. S. Patterson and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol., Vol. 35, No 9, pp. 1317-1334 (1990).
[20] T. L. Troy, D. L. Page and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” Journal of Biomedical Optics, Vol. 1, No. 3, pp. 342-355 (1996).
[21] L. Wang, P. P. Ho, C. Liu, G. Zhang and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical kerr gate,” Science, Vol. 253, No. 5021, pp. 769-771 (1991).
[22] J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” Journal of the Optical Society of America, Vol. 10, No 1, pp. 127-140 (1993).
[23] H. Wabnitz, M. Möller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhahn, J. P. Dreier, H. Obrig, J. Steinbrink and R. Macdonald, “A time-domain NIR brain imager applied in functional stimulation experiments,” SPIE-OSA, Vol. 5859, pp. 1-9 (2005).
[24] J. Wang, “Broadband near-infrared tomography for breast cancer imaging,” Ph.D. Dartmouth College, Hanover NH, (2009).
[25] S. Kang, S.-Y. Wu and W.-C. Fang, “Advanced green energy system-on-chip design for portable diffusion optical tomography,” IEEE, doi 10.1109, pp. 611-614 (2011).
[26] J. P. Robinson, LECTURE 8 Flow Cytometry: Theory
http://www.cyto.purdue.edu/archive/class/bms602a/lecture0008.ppt
[27] B. W. Pogue, M. Testorf, T. McBride, U. Osterberg and K. Paulsen, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Optics Express, Vol. 1, No. 13, pp. 391–403 (1997).
[28] D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics, 9th edition, JohnWiley and sons, New York (2010).
[29] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition, Oxford University Press, USA (2006).
[30] J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Applied Optics, Vol. 32, pp. 399-410 (1993).
[31] G. Finger, I. Baker, R. Dorn, S. Eschbaumer, D. Ives, L. Mehrgan, M. Meyer and J. Stegmeier, “Development of high speed low noise NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry,” SPIE, Vol. 7742 (2010).
[32] J. Kirkhorn, Introduction to IQ-demodulation of RF-data, IFBT, NTNU (1999).
[33] J. Wilson and J. F. B. Hawkes, Optoelectronics, 1st edition, Prentice Hall (1993)
[34] 繆家鼎,徐文娟,牟同升,光電技術,五南圖書出版公司,臺北市 (2003)。
[35] E. Bogatin, Bandwidth of a signal from its rise time,
http://www.edn.com/electronics-blogs/all-aboard-/4424573/Rule-of-Thumb--1--The-bandwidth-of-a-signal-from-its-rise-time
[36] HAMAMATSU, H7732-10 Datasheet,
http://html.alldatasheet.com/html-pdf/397738/HAMAMATSU/H7732-10/980/2/H7732-10.html
[37] R. Hanke, Filter Faszination, Hama, German (1977)
[38] R. D. Straw, ARRL Handbook for Radio Communications 2006: 83rd Edition, American Radio Relay League, Inc. (2005)
[39] Becker and H. GmbH, How (and why not) to Amplify PMT Signals,
http://www.becker-hickl.de/pdf/ampmt.pdf
[40] eo Edmund, Coating Curve: Bandpass Interference Filter,
http://www.edmundoptics.com/techsupport/resource_center/product_docs/curv_67782.pdf
[41] R. Michels, F. Foschum and A. Kienle, “Optical properties of fat emulsions,” Optical Express, Vol. 16, pp. 5907-5925 (2008).
[42] V. Ntziachristos, X. H. Ma, A. G. Yodh and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum., Vol. 70, pp. 193–201 (1999).
[43] 邱健忠, “近紅外光頻域式量測系統於固態乳房仿體之量測與分析研究,” 國立中央大學, 碩士論文 (2011)。