跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉展良
Zhan-Liang Liu
論文名稱: 利用微波電漿化學氣相沉積法成長多壁奈米碳管及其電性之研究
指導教授: 黃豐元
Fuang-Yuan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 內連線奈米碳管
外文關鍵詞: interconnect, carbon nanotube
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本論文主要利用IC圖案化製程,製作金屬內連線引洞(Vias)的結構再使用微波電漿化學氣相沉積(Microwave Plasma Chemical Vapor Deposition, MPCVD),以Ta的良好特性當作催化劑Ni的阻障層及上下電極,成長多壁奈米碳管(Multi-wall Carbon Nanotube, MWCNT)來當做積體電路中內連線的材料。
    本實驗配合掃描式電子顯微鏡(SEM)、拉曼光譜儀(Raman Spectroscopy)和I-V量測儀,探討在基板400oC下不同製程參數對 奈米碳管的型態及電性的影響。結果發現在不同前處理電漿功率與不同前處理時間的參數中,當前處理電漿功率越大、前處理時間越長,奈米碳管的直徑會減小、密度會增大,結構的電阻值會降低。在不同成長電漿功率的參數中,奈米碳管的石墨化程度隨著成長電漿功率的增加而上升,結構的電阻值也因奈米碳管石墨化程度越好而下降。而在不同甲烷流量比例的參數中,15%的甲烷流量比例擁有最好的石墨化程度,以及最低的結構電阻值。實驗中還利用不同的溫度量測奈米碳管的電性,探討溫度對奈米碳管電性的影響,結果觀察到奈米碳管的電阻會隨著溫度下降而增加。最後以Ta和TiN做為阻障層探討奈米碳管的型態,發現利用Ta為阻障層,成長奈米碳管,其直徑會較TiN阻障層來的小。


    目錄 摘要 i 謝誌 ii 目錄 iii 表圖目錄 v 第一章 緒論 1.1 前言 1 1.2 研究動機 3 第二章 奈米碳管介紹 2.1 奈米碳管的起源 5 2.2 奈米碳管的晶體結構 7 2.3 奈米碳管的成長機制 10 2.4 奈米碳管的應用 11 2.5 奈米碳管的合成 14 第三章 實驗方法與設備 3.1 實驗流程 18 3.2 二極體元件製作流程 20 3.3 拉曼分析結構 24 3.4 不同尺寸接觸孔洞的製作 24 3.5 實驗儀器簡介 26 第四章 結果與討論 4.1 製程參數對奈米碳管型態的影響 30 4.1.1 前處理電漿功率對奈米碳管型態的影響 30 4.1.2 成長電漿功率對奈米碳管型態的影響 31 4.1.3 甲烷流量比例對奈米碳管型態的影響 32 4.1.4 前處理時間對奈米碳管型態的影響 33 4.2 製程參數對奈米碳管石墨化的影響 34 4.2.1 前處理電漿功率對奈米碳管石墨化的影響 34 4.2.2 成長電漿功率對奈米碳管石墨化的影響 34 4.2.3 甲烷流量比例對奈米碳管石墨化的影響 35 4.2.4 前處理時間對奈米碳管石墨化的影響 36 4.3 奈米碳管型態對電性的影響 37 4.4 奈米碳管石墨化程度對電性的影響 38 4.5 低溫下奈米碳管的電性 39 4.6 以TiN和Ta為阻障層奈米碳管型態的探討 42 4.7 比較銅內連線與奈米碳管內連線 44 第五章 結論 69 參考文獻 70

    參考文獻
    [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354(1991)56
    [2] D.S. Bethune, C.H Kiang, Saroy, “Cobalt-caralyzed growth of carbon
    nanotubes with single-atomic-layerwalls”, Nature 363(1993)605
    [3] H.M. Cheng, Q.H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”,
    Carbon,39(2001)1447
    [4] A.K.M.F. Kibria, Y.H. Mo, K.S. Park, K.S. Nahm, M.H. Yun, “Electrochemical
    hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH
    medium”, International Journal of Hydrogen Energy 26(2001)823
    [5] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J.
    Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature
    386(1997)377
    [6] S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-temperature transistor
    based on a single carbon nanotube”, Nature 393(1998)49
    [7] C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J.
    Nygard, J. Borggreen, “Gold nanoparticle single-electron transistor with
    carbon nanotube leads”, Appl. Phys. Lett. 79(2001)2106
    [8] P.W. Chiu, G.S. Duesberg, U.D. Weglikowska, “Interconnection of carbon
    nanotubes by chemical functionalization”, Appl. Phys. Lett. 80(2002)3811
    [9] S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-temperature transistor
    based on a single carbon nanotube”, Nature 393(1998)49
    [10] C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J.
    Nygard, J. Borggreen, “Gold nanoparticle single-electron transistor with
    carbon nanotube leads”, Appl. Phys. Lett. 79(2001)2106
    [11] P.W. Chiu, G.S. Duesberg, U.D. Weglikowska, S. Roth, “Interconnection of
    carbon nanotubes by chemical functionalization”, Appl. Phys. Lett.
    80(2002)3811
    [12] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, “Carbon nanotubes in
    interconnect application”, Mircoelectronic Engineering 64(2002)399
    [13] Kaushik Roy, “Circuit modeling of carbon nanotube interconnect amd their
    performance estimation in VLSI design”, Computational Electronics
    [14] http://www.mos.org/cst/article/4864/3.html
    [15] B.Q. Wei, R. Vajtal, P.M. Ajayan, “Reliability and current carrying
    capacity of carbon nanotubes”, Appl. Phys. Lett. 79(2001)1172
    [17] Rodney S. Ruoff “Mechanical and thermal properties of carbon nanotube” ,
    6(1995)21
    [21] Rice University:Rick Smalley’s Group Home Page-Image Gallery
    [22] D.S. Bethune, C.H Kiang, Saroy ”Cobalt-caralyzed growth of carbon
    nanotubes with single-atomic-layerwalls”, Nature 363(1993)605
    [23] TH. Henning, F. Salama, “Carbon in the Universe”, Science,
    282(1998)2204
    [24] 成會明, 張勁燕, “奈米碳管”, 五南圖書出版股份有限公司
    [25] R.T.K. Baker, P.S. Harries, “Chemistry and Physics of Carbon”, Marcel
    Dekker, New York(1978) 83
    [26] S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey,F.
    Derbyshire,”Model of carbon nanotube growth through chemical vapor
    deposition”, Chem. Phys. Lett. 315(1999)25
    [27] B.Q. Wei, R. Vajtal, P.M. Ajayan, “Reliability and current carrying
    capacity of carbon nanotubes”, Appl. Phys. Lett. 79(2001)1172
    [28] D.W. Austin, A.A. Puretzky, D.B. Geohegan, P.F. Britt, M.A. Guillorn, M.L.
    Simpson, “The electrodeposition of metal at metal/carbon nanotube
    junctions”, Chem. Phys. Lett. 361(2002)525
    [29] Y.S. Han, J.K. Shin, S.T. Kim, “Synthesis of carbon nanotube bridges on
    patterned silicon wafers by selective lateral growth”, Appl. Phys.
    90(2001)5731
    [30] S. Frank, P. Poncharal, Z.L. Wang, Walt A. de Heer, “Carbon nanotube
    quantum resistors“, Science 280(1998)1774
    [31] H.M. Cheng, Q.H. Yang, C. Liu, “Hydrogen storage in carbon nanotubes”,
    Carbon 39(2001)1447
    [32] A.K.M.F. Kibria, Y.H. Mo, K.S. Park, K.S. Nahm, M.H. Yun,
    “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon
    nanotubes in KOH medium”, International Journal of Hydrogen Energy
    26(2001)823
    [33] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J.
    Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature
    386(1997)377
    [34] J. Kong, N.R. Franklin, C. Zhou, Science 287(2000)622
    [35] Y. Homma, T. Yamashita, Y. Kobayashi, T. Ogino, “Interconnection of
    nanostructures using carbon nanotubes”, Phys. B 323(2002)122
    [36] Y.S. Han, J.K. Shin, S.T. Kim, “Synthesis of carbon nanotube bridges on
    patterned silicon wafers by selective lateral growth”, Appl. Phys.
    90(2001)5731
    [37] Y.H. Lee, Y.T. Jang, C.H. Choi, E.K. Kim, B.K. Ju, D.H. Kim, C.W. Lee,
    S.S. Yoon”, Direct nano-wiring carbon nanotube using growth barrier: a
    possible mechanism of selective lateral growth”, Appl. Phys. 91(2002)6044
    [38] Y.S. Park, K.S. Kim, H.J. Jeong, W.S. Kim, J.M. Moon, K.H. An, D.J. Bae,
    Y.S. Lee, G.S. Park, Y.H. Lee, “Low pressure synthesis of single-walled
    carbon nanotubes by arc discharge”, Synthetic Metals 126(2002)245
    [39] H.J. Lai, M.C.C. Lin, M.H. Yang A.K. Li, “Synthesis of carbon nanotubes
    using polycyclic aromatic hydrocarbons as carbon sources in an arc
    discharge”, Materials Science and Engineering C 16(2001)23
    [40] T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki, “Purification of
    nanotubes”, Nature 367(1994)519
    [41] M.J. Yacaman, M.M. Yoshida, L. Rendon, J.G. Saniesteban, “Catalytic
    growth of carbon microtubules with fullerene structure”, Appl. Phys.
    Lett. 62(1993)202
    [42] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley,
    Chem. Phys. Lett. 243(1995)49
    [43] R. Andrewsa, D. Jacques, “Investigations of single-wall carbon nanotube
    growth by time-restricted laser vaporization”,
    Chem. Phys. Lett. 303(1999)467
    [44] J.H. Han, S.H. Choi, T.Y. Lee, J.B. Yoo, C.Y. Park, H.J. Kim, I.T. Han, S.
    Yu, W. Yi, G.S. Park, M. Yang, N.S. Lee, J. M. Kim, “Effects of growth
    parameters on the selective area growth of carbon nanotubes”, Thin Solid
    Films 409(2002)126
    [45] Y.S. Woo, D.Y. Jeon, I.T. Han, N.S. Lee, J.E. Jung, J.M. Kim, “In situ
    diagnosis of chemical species for the growth of carbon nanotubes in
    microwave plasma-enhanced chemical vapor deposition”, Diamond and Related
    Materials 11(2002)59
    [46] U. Kim, R. Pcionek, D.M. Aslam, D. Tomanek, “Synthesis of high-density
    carbon nanotube films by microwave plasma chemical vapor deposition”,
    Diamond and Related Materials 10(2001)1947
    [47] W.D. Zhang, J.T.L. Thong, W.C. Tjiu, L.M. Gan, “Fabrication of vertically
    aligned carbon nanotubes patterns by chemical vapor deposition for field
    emitters”, Diamond and Related Materials 11(2002)1638
    [48] Y. Zhang, Nathan W. Franklin, Robert J. Chen, Hongjie Dai, “Metal coating
    on suspended carbon nanotubes and its implication to metal-tube
    interaction”, Chem. Phys. Lett. 331(2000)35
    [49] W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, S. Xie, “Raman
    characterization of aligned carbon nanotubes produced by thermal
    decomposition of hydrocarbon vapor”, Appl. Phys. Lett. 19(1997)70
    [50] 鄭木棋, “奈米碳管元件之製作與分析”, 國立中央大學機械工程研究所 碩士論文
    [51] Crespi VH. Phys. Rev. B. “Relations between global and local topology in
    multiple nanotube junctions “, 58(1998)12671
    [52] F. Wakaya, K. Katayama, K. Gamo, ”Contact resistance of multiwall carbon
    nanotubes”, Microelectronic Engineering 67(2003)853
    [53] M.P. Anantram, ”Coupling of carbon nanotubes to metallic contacts”,
    Phys. Rev. B 14(2000)221
    [54] M.S. Fuhrer, Marvin L. Cohen, A. Zettl, Vincent Crespi, ”Localization in
    single-wall carbon nanotubes”Solid State Communications 109(1999)105
    [55] David Mann, Ali Javey, Jin Kong, Qian Wang, Hongjie Dai, “Ballistic
    Transport in Metallic Nanotubes With Reliable Pd Ohmic Contacts”
    [56] Navin Srivastava and Kaustav Banerjee , “A comparative scaling analysis
    of metallic and carbon nanotube interconnections for nanometer scale VLSI
    technologies”, VMIC (2004)393

    QR CODE
    :::