| 研究生: |
王冠彬 Kuan-Pin Wang |
|---|---|
| 論文名稱: |
含細料砂質改良土之力學性質 Mechanical properties of cement treated the sand containing fine content |
| 指導教授: |
張惠文
Huei-Wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 水泥改良 、含細料砂土 、液化阻抗 |
| 外文關鍵詞: | fine content, liquefaction resistance, cement improvement |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以峴港砂代表現地回填料,進行砂土液化性質及水泥改良效果之評估。在不同水泥配比與養治時間之條件下對含細料砂質改良土之力學性質作一探討。本研究之實驗重點乃以相對密度為40%之砂土並製作不同細料含量5%、10%、15%,配以0.5%、1.0%及2.0%的水泥配比,利用濕搗法製作改良土試體,經7天或28天養治後,進行無圍壓縮試驗及動力三軸試驗。
經由試驗結果發現,添加水泥於含細料砂質土壤內並加以混合攪拌,對於剪力強度的提供有著明顯的效果。水泥改良土之無圍壓縮強度隨著水泥配比及養治時間之增加而顯著的提高;另一方面,隨著細料含量之增加,剪力強度亦有相同提高之趨勢,但細料含量大於10%後,因結構之改變造成無圍壓縮強度有下降之趨勢。
在本研究的試驗條件下,含細料砂質土壤之液化阻抗較高於未含細料之砂土;而經水泥改良後之含細料砂土,又遠高於含細料之砂土。養治時間為7天時,添加2%水泥配比含細料砂土之液化阻抗將因而提升。養治時間28天時,含細料砂土添加1%水泥後,其液化阻抗即可獲得明顯的改善。而控制細料含量於10%左右添加水泥進行改良,即可得到良好之成效。另外,本研究亦探討了水泥改良土之剪力模數、剪應變與水泥配比間的關係。經試驗及分析後,發現改良土對以上諸特性均有良好之改良效果。且在相同之應力振幅作用下,添加水泥並控制細料含量為10%左右時,可使產生之剪應變較其他配比之改良土為小。
This research used Danang sand as the representing material of in-situ reclaimed soil to investigate the properties of liquefaction and to evaluate the improvement effects attributed to using cement. A series of experiments have been done on a set of samples made by using wet tamping method. The set consists of samples having different fine contents (5%, 10%, and 15%) mixed with different cement contents (0.5%, 1.0%, and 2.0%). After curing for 7 or 28 days, the unconfined compression tests and dynamic triaxial tests were conducted.
According to the experimental results, adding cement into the sands containing fine contents will significantly be enhanced the unconfined compression strength. On the other hand, the shear strength tends to be improved while the fine content is increased. However, when the fine content goes up to more than 10%, the unconfined compression strengths tend to decrease due to the change of soil structure.
Under the experiment conditions, when the curing period is 7 days, adding cement of 2% mixing rates to the sand containing fine content will increase the liquefaction resistance. For the case of 28-day curing, adding cement of 1% mixing rates to the sand containing fine content will also have the same effect. As a brief summary, by controlling the fine content at about 10% along with adding cement, it will result in a better liquefaction resistance than the other ratio.
1. 土質工學會,土質試驗法,日本土質工學會,第172~188頁(1979)。
2. 梁曉光,「濱海抽砂造地工程」,中興工程,第42期,第45-62頁(1994)。
3. 蕭達鴻,「砂質土壤添加水泥材料工程特性之研究」,技術學刊,第十一卷,第三期,第305-311頁(1996)。
4. 吳偉特,「臺灣地區砂性土壤液化潛能之初步分析」,土木水利季刊,第六卷,第二期,第39~70頁(1979)。
5. 陳嘉裕,「細粒料含量對砂土液化潛能之影響研究」,碩士論文,國立成功大學土木工程學系,台南(1999)。
6. 陳守德,「微量細料對砂性土壤液化潛能之影響」,碩士論文,國立台灣大學土木工程學系,台北(1986)。
7. 林耀煌,「地盤改良工法」,地工技術雜誌,第八期,第16~25頁(1984)。
8. 金永斌、游啟亨、蕭達鴻,「砂土添加水泥熟料液化穩定研究」,中國土木水利工程學會七十二年年會暨慶祝十週年紀念研討會論文,第651~671頁,台北(1983)。
9. 張惠文、曾迪華、李顯智、鄭清江、徐瑞祥,「台灣地區海岸填海造地技術整合第一期計畫」,行政院公共工程委員會專案研究計畫成果報告,計畫編號:86-技-03,(1997)。
10.張惠文、廖新興、鄭清江,「砂質地盤液化之防治方法探討」,地工技術雜誌,第三十八期,第17-29頁(1987)。
11.張惠文,「中央大學地盤改良課程講義」,課程講義,國立中央大學土木工程學系,中壢(1999)。
12.張惠文,「利用水泥及石灰系材料之深層攪拌工法」,現代營建,第三十八期,第45~50頁(1984)。
13.張惠文、陳修,「水泥系改良土之工程特性」,行政院國家科學委員會研究計畫,計畫編號:NSC74-0410-E008-04,(1985)。
14.張善同,「旋轉灌漿固化地基之技術」,中國鐵道出版社,北京(1984)。
15.陳修,「水泥系改良土之工程特性」,碩士論文,國立中央大學土木工程學系,中壢(1985)。
16.黃麗兒,「水泥混合處理砂質土壤液化特性之改良研究」,碩士論文,國立中央大學土木工程學系,中壢(2001)。
17.邱奇昌,「砂土經水泥改良後之力學性質」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
18.黃安斌、張嘉偉、何應璋、葉嘉鎮,「雲林麥寮粉土細砂之工程性質」,地工技術,第六十七期,第55-68頁(1998)。
19.蔡攀鰲,「土木材料試驗」,三民書局(1986)。
20.蔡宗宏,「台灣西部近岸抽砂回填土壤液化潛能之研究」,碩士論文,國立海洋大學河海工程研究所,基隆(1993)。
21.蔡政泰,「添加波索蘭材料之水泥系改良土工程性質之研究」,碩士論文,國立成功大學土木工程研究所,台南(1995)。
22.簡連貴,「水力砂土回填技術在造地工程之應用」,地工技術雜誌,
第51期,第21-34頁(1995)。
23.簡連貴、葉國樑、胡淵南,「細料含量對抽砂回填土壤動態特性之
影響」,中國土木水利工程學刊,第七卷,第四期,第409-420頁(1995)。
24.鄭清江,「片狀砂土模擬水力填築後剪力特性之研究」,博士論文,國立中央大學土木工程學系,中壢(1996)。
25.Chung, K.Y.C. and Wong, I.H., “Liquefaction Potenial of Soils with Plastic Fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, July, pp.887-897(1982).
26.Dupas, I.M. and Decker, A., “Static and Dynamic Properties of Sand Cement,” Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No.GT3, June, pp.799-817(1981).
27.Erten, D. and Maher, M.H., “Cyclic Undrained Behavior of Siltysand,” Soil Dynamic and Earthquake Engineering, pp.115-123(1995).
28.K’ezdi, A., “Stabilized Earth Roads,” Developments in Geotechnical Engineering 19, New York,(1979).
29.Lee, K.L. and Fitton, J.A., “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM STP 450, pp.801-821(1969).
30.Morgenstern, N. R., “Hydraulic Fill Structures – A Perspective,” Hydraulic Fill Structures, Geotechnical Special Publication, No.21, ASCE, pp.1-31(1988).
31.Placzek, D., “Methods for the Calculation of Settlements Due to Ground-Water Lowering,” Proceedings of the Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, Vol.3, pp.1813-1818(1989).
32.Pyke, R. M,. Knuppel, L. A., and Lee, K. L., “Liquefaction Potential of Hydraulic Fills,” Journal of Geotechnical Engineering Division, ASCE, Vol.104 ,No. GT11, pp.1335-1354(1978).
33.Saxena, S.K. et al., “Liquefaction Resistance of Artificially Cemented Sand,” Journal of Geotechnical Engineering Division, ASCE, Vol. 114, No.12, pp.1395-1413(1988).
34.Seed, H.B., “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering Session on Soil Dynamics Committee of Geotechnical Engineering Division, ASCE, pp.1-104(1976).
35.Seed, H.B. and Lee, K.L., “Liquefaction of Saturated Sands during Cyclic Loading,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134(1966).
36.Seed, H.B., Wong, R.T., Idriss, I.M., and Toimatsu, K., “Moduli and Damping Factors for Dynamic Analysis of Cohesionless Soils,” Journal of Geotechnical Engineering Division, ASCE, Vol.112, No.GT11, pp.1016-1032(1986).
37.Sladen, J. A. and Hewitt, K. J., “Influence of Placement Method on the In-Situ Density of Hydraulic Sand Fills,” Canadian Geotechnical Journal, Vol.26, pp.453-466(1989).
38.Tringale, P.T., “Soil Identification In-situ Using an Acoustic Cone Penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
39.Tokimatsu, K. and Seed, H. B., “Evaluation of Settlement in Sands Due to Earthquake Shaking,” Journal of Geotechnical Engineering, Vol.113, No.8, pp.861-878(1987).
40.Umehara, Y., Zen, K., and Yoshizawa,H., 1990, “Design Concept of Treated Ground by Premixing Method,“ Geo-coast, 3-6, Sep., Yokohama, pp.519-524(1991).
41.Vaid, Y.P. and Chern, J.C., “Cyclic and Monotonic Undrained Response of Saturated Sands,” National Convension Session on Advance in the Art of Testing Soils Under Cyclic Loading, ASCE, Detroit, pp.120-147(1985).
42.Verhoeven, F. A., de Jong A. J., “The Essense of Soil Properties in Today’s Dredging Technology,” Hydraulic Fill Structures, Geotechnical Special Publication, No.21, ASCE, pp.1033-1064(1988).
43.Yoshimi, Y., “Ductility Criterion for Evaluation Liquefaction Remediation Measure,” Tsuchi-to-kiso JSSMFE, Vol.36, No.6, pp.33-389(1990).
44.Zen, K., “Development of Premixing Method as a Measure to Construct a Liquefaction-free Reclaimed Land,” Tsuchi-to-kiso, JSSMFE, Vol. 36, No.6, pp.27-32(1990).