跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉凱元
Kai-yuan Liu
論文名稱: 鋁電極電阻式隨機存取記憶體單胞元之製作與特性研究
Fabrication and Characteristics of Resistive Random Access Memory Cells with Al Electrodes
指導教授: 洪志旺
Jyh-wong Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 47
中文關鍵詞: 電阻式隨機存取記憶體
外文關鍵詞: RRAM, resistive switching, Al electrodes, non-volatile memory, NVM
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非揮發性記憶體在現今社會中扮演非常重要的角色,幾乎在任何消費性電子產品中皆為不可或缺的記憶元件。現今最普遍的非揮發性記憶體元件為快閃記憶體,但隨著半導體元件的微縮,快閃記憶體的穿隧介電層的厚度將隨之下降,導致漏電現象嚴重而無法滿足記憶功能。「電阻式記憶體」由於結構簡單,存取速度快,以及省電的特性,被認為是最有可能成為下一個世代的非揮發性記憶體元件之一。
    本論文採用的電阻式記憶體的結構為金屬/絕緣層/金屬的結構,相當適合利用當前積體電路的後段製程技術來進行製作,可將記憶體元件製作於通孔之中。本實驗使用後段製程常用的金屬鋁做為電極,並且使用常見的高介電係數材料氧化鋁做為絕緣層,來探討其記憶功能、特性及其面對將來微縮的潛力,實驗結果發現在單極操作下具有非揮發記憶特性,且有高的高低電阻比值以及良好的微縮特性,且由於製程完全使用現階段積體電路製程技術,所以具有商業化量產的可能性。


    Non-volatile memory (NVM) plays a vital role in modern society, and it is essential in almost every consumer electronic products. The most prevalent NVM used nowadays is flash memory. However, with the scaling down of semiconductor device, tunneling oxide thickness is also going down, which leads to a severe leakage of storage charge, and unable to satisfy the memory requirement. Resistive random access memory (RRAM) is considered one of the most promising one to become next-generation NVM device due to its simple structure, fast program/erase speed, and low power consumption.
    Owing to its metal/insulator/metal structure, RRAM is suitable to be fabricated by utilizing modern integrated-circuit back-end-of–line technology, and buried into via. In this thesis, the RRAM was fabricated by using Aluminum, which is a common interconnect material in back-end process , as its top and bottom electrode, and Al2O3, which is a high-K material in semiconductor technology, as its insulator layer, Its memory capability, characteristics and scaling potential are investigated in this study, and the experiment result shows that the non-volatile memory characteristic was obtained under unipolar operation with good high/low resistance ratio and scaling potential. Since its fabrication process is fully compatible with modern VLSI technology, Al/Al2O3/Al RRAM device may have the possibility to be commercialized in the near future.

    Chapter 1 Introduction-----------------------------------1 1-1 Introduction to Non-Volatile Memory---------------1 1-1.1 Magnetoresistive Random Access Memory (MRAM)----4 1-1.2 Ferroelectric Random Access Memory (FRAM)-------5 1-1.3 Phase Change Random Access Memory (PRAM)--------8 1-1.4 Resistive Random Access Memory (RRAM)----------11 Chapter 2 Physics and Operations of RRAM----------------15 2-1 Mechanisms of Carrier Transport in RRAM----------15 2-2 Mechanisms of Resistive Switching in RRAM--------19 2-3 Operation Modes of RRAM--------------------------24 Chapter 3 Experimental Process and Details--------------26 3-1 Fabrication Flow of Al/Al2O3/Al RRAM-------------26 3-2 Processes----------------------------------------29 Chapter 4 Results and Discussion------------------------31 4-1 AFM Topography of Al2O3 Switching Layer----------31 4-2 Current-Voltage Characteristics------------------32 4-3 Carrier Transport and Resistance Switching Mechanisms---------------------------------------39 Chapter 5 Conclusion------------------------------------42 References----------------------------------------------44

    [1] BCC Research, “Non-Volatile Memory Markets SMC060A, Jul. 2005
    [2] International Technology Roadmap for Semiconductor, “ITRS Report 2008 Update,” 2008
    [3] J. M. Slaughter, “Recent Advances in MRAM Technology,” Device Research Conference, pp. 245-246, 2007
    [4] A. Sheikholeslami and P. G. Gulak, “A Survey of Circuit Innovations in Ferroelectric Random-Access Memories,” Proceedings of the IEEE, Vol. 88, No. 5, pp. 667-689, May 2000
    [5] R. E. Jones, Jr., “Ferroelectric Nonvolatile Memories for Embedded Applications,” Custom Integrated Circuits Conference Proceedings of the IEEE, pp. 431-438, 1998
    [6] S. Lai, “Current Status of the Phase Change Memory and its Future,” IEEE IEDM Tech. Dig., pp. 10.1.1-10.1.4, Dec 2003
    [7] G. H. Koh, Y. N. Hwang, S. H. Lee, S. Y. Lee, K. C. Ryoo, J. H. Park, Y. J . Song, S. J. Ahn, C. W. Jeong, F. Yeung, Y. T. Kim, J. B. Park, G. T. Jeong, H. S. Jeong and K. Kim, “PRAM Process Technology,” IEEE International Conference on Integrated Circuit Design and Technology, pp.53-57, 2004
    [8] K. Green, “A Memory Breakthrough,” Technology Review, Feb. 2008
    45
    [9] M. D. Lee, C. H. Ho, C. K. Lo, T. Y. Peng, and Y. D. Yao, “Effect of Oxygen Concentration on Characteristics of NiOx-Based Resistance Random Access Memory” IEEE Trans. Magnetics, Vol. 43, No. 2, pp. 939-942, Feb. 2007
    [10] D. L. Lewis and H. S. Lee, “Architectural Evaluation of 3D Stacked RRAM Caches,” 3D System Integration IEEE Conf., pp.1-4, 2009
    [11] W. W. Zhuangl, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsul, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu3, and A. Ignatiev, “Novel Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM),” IEEE IEDM Dig., pp. 193-196, 2002
    [12] S. M. Sze, “Physics of Semiconductor Devices 2nd Edition,” 1983
    [13] C. Cagli, D. Ielmini, F. Nardi and A. L. Lacaita, “Evidence for Threshold Switching in the Set Process of NiO-based RRAM and Physical Modeling for Set, Reset, Retention and Disturb Prediction,” IEEE IEDM , pp.1-4, 2008
    [14] R. Waser, and M. Aono, “Nanoionics-based Resistive Switching Memories,” Nature Materials, Vol. 6, pp. 833-840, 2007
    [15] H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, “TiO2 Anatase Nanolayer on TiN Thin Film Exhibiting High-Speed Bipolar Resistive Switching”, Appl. Phys. Lett. Vol. 89, 223509, Nov 2006
    [16]. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface” Appl. Phys. Lett. Vol. 85, 4073, Sep. 2004
    [17] C. Schindler, S. Chandran, P. Thermadam, R.r Waser and M. N. Kozicki, “Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2,” IEEE Trans. Electron Devices, Vol. 54, No. 10, pp. 2762-2768, Oct. 2007
    [18] G. Dai, H. Wolff, F. Pohlenz, and H. U. Danzebrink, “A Metrological Large Range Atomic Force Microscope with Improved Performance,” Rev. Sci. Instrum., Vol. 80, 043702, Apr. 2009
    [19] B. Gao, H. W. Zhang, S. Yu, B. Sun, L. F. Liu, X. Y. Liu, Y. Wang, R. Q. Han, J. F. Kang, B. Yu and Y. Y. Wang, “ Oxide-Based RRAM: Uniformity Improvement Using A New Material-Oriented Methodology,” IEEE Symposium VLSI Technology, pp. 30-31, June. 2009
    [20] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, “Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” IEEE International Electron Devices Meeting, pp.1-4, Dec. 2008
    [21] S. Seo, M. J. Lee, D. H. Seo, S. K. Choi, D.-S. Suh, Y. S. Joung, and I. K. Yoo, “Conductivity switching characteristics and reset currents in NiO films,” Appl. Phys. Lett. Vol. 86, 095093, Feb. 2005
    [22] H. A. Fowler, J. E. Devaney and J. G. Hagedorn, “Growth Model for Filamentary Streamers in an Ambient Field,” IEEE Trans. Dielectrics and Electrical Insulation,” Vol. 10, No. 1, Feb. 2003
    [23] D. W. Fan, “Development of InAs/AlSb Metal Oxide Semiconductor HEMT,” Master Thesis, National Central Universality, 2009

    QR CODE
    :::