跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林淑軒
Shu-Hsuan Lin
論文名稱: MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study
指導教授: 余嘉裕
Jia-Yuh Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 105
中文關鍵詞: 馬登-朱利安振盪
外文關鍵詞: Madden-Julian Oscillation
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選擇5個Madden-Julian Oscillation (MJO)事件,根據其在MJO index(MJOI)相位圖上之傳播特徵,將其分類成兩種(Type S和 W) MJO事件。前者在整個對流生命中維持一定的對流強度,而後者則是在離開印度洋(IO)地區後便會減弱。透過使用再分析ERA5資料來研究IO地區的濕靜能(MSE)收支及相關降雨趨勢得知,在MJO不同相位中,屬於Type S 的MJO事件皆呈現規律且顯著的充放電過程;相反地,Type W 的事件在特定的物理項及一些相位中,呈現較小的振幅。為更好的量化不同MJO事件的強度及其傳播潛力,我們制定一個新的指數為「recharge-discharge power」(RDP),其代表gross moist stability (GMS) plane上橢圓所圍繞的面積。結果顯示,RDP指數和MJO的對流強度、東傳能力有正相關,擁有較大對流強度及傳播能力的MJO事件,其RDP值會較大。
    本研究也嘗試發展了一套使用福爾摩沙衛星無線電掩星衛星(COSMIC)資料的MJO事件監測系統,預期使用此系統來分辨MJO事件強度並在未來發展預報用途。本研究使用客觀分析將level-II資料轉換成level-III。經過確認格點化資料符合在時間及空間上呈現合理的分佈後,我們接著在MSE收支分析及GMS plane中,用COSMIC取代再分析資料,檢視該資料在MSE收支中,其能夠代表對流充放電過程的程度及表現。在熱帶地區,比起福衛三號(COSMIC-1),福衛七號(COSMIC-2)提供更大量且精細的反演大氣溫度及比濕剖面,更能反應熱帶對流特徵。因此,利用COSMIC-2資料擁有高垂直解析度及近即時資料輸出的特性,我們設計新版本的GMS plane,替換MSE和乾靜能通量成gross moist stratification和gross dry stability來提供即時MJO事件的對流狀態。


    In this study, five different Madden-Julian Oscillation (MJO) events are chosen and classified into two main groups (Type S and W) by their propagation characteristics as revealed in the MJO index (MJOI) phase diagram. The former shows a strong intensity during the entire life cycle; while the latter tends to decay after leaving the Indian Ocean (IO) region. From the evolution of moist static energy (MSE) budget conducted over the IO region and the associated precipitation change using the ERA5 data, Cases in Type S show a robust recharge-discharge cycle in different phases; in contrast, cases in Type W have a smaller recharge-discharge amplitude in certain terms in some phases. We define an index called “recharge-discharge power” (RDP)—an area enclosed by the elliptical orbiting cycle on the gross moist stability (GMS) plane—to measure the intensity and propagation potential of an MJO event. The result indicates that the RDP index is highly and positively correlated to the intensity of MJO, and an MJO event with a greater RDP index exhibits a greater intensity and propagation potential compared to a smaller one.
    By comparing strong and weak MJO events, we further develop an MJO monitoring system by using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Radio Occultation data. As compared with COSMIC-1, COSMIC-2 provides abundant atmospheric temperature and moisture observations, especially in the Tropics. Firstly, we convert level-II COSMIC data into level-III by iterative correction objective analysis for computational purpose. After confirming the gridded data in spatial and temporal characteristic, we replace the reanalysis by gridded COSMIC in MSE budget analysis and GMS plane. Due to high resolution of layers and near-real time output in COSMIC-2, we expect that COSMIC-2 can offer instant temperature and moisture conditions for a new GMS plane using the gross moist stratification and gross dry stability.

    摘要 i Abstract ii Acknowledgements iii Contents v List of Figures vi List of Tables xi Chapter 1 Introduction 1 Chapter 2 Data and Methodology 4 2.1 Reanalysis and sounding data 4 2.2 Gridded radio occultation COSMIC data 4 2.3 MJO index 6 2.4 Moisture, dry static and moist static energy budget 6 Chapter 3 Physical Mechanisms of MJO from Reanalysis Data 12 3.1 Climatology of MJO 12 3.2 Case selection 13 3.3 Energy budget and precipitation 14 3.4 The GMS plane and recharge-discharge power 18 Chapter 4 COSMIC Data Application in MJO Analysis 37 4.1 Data evaluation 37 4.2 Energy budget and GMS plane analyses 38 4.3 A new conceptual model of GMS plane 40 Chapter 5 Summary and Discussion 56 Appendix A: Plots of Individual MJO Events 59 Appendix B: COSMIC Data Evaluation 65 Appendix C: Interpolated ERA5 Budget Analysis 81 References 83

    Back, L., and C. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophysical research letters, 33, L17810.
    Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. Journal of Applied Meteorology and Climatology, 3, 396-409.
    Bui, H. X., J.-Y. Yu, and C. Chou, 2016: Impacts of vertical structure of large-scale vertical motion in tropical climate: Moist static energy framework. Journal of the Atmospheric Sciences, 73, 4427-4437.
    Chen, Y.-C., and J.-Y. Yu, 2021: Modes of tropical convection and their roles in transporting moisture and moist static energy: contrast between deep and shallow convection. Climate Dynamics, 57, 1789-1803.
    Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. Journal of climate, 17, 2688-2701.
    Cressman, G. P., 1959: An operational objective analysis system. Monthly Weather Review, 87, 367-374.
    Das, U., C.-J. Pan, and S.-S. Yang, 2022: Evolution of individual equatorial atmospheric Kelvin waves in the stratosphere from FORMOSAT-7/COSMIC-2 temperatures. Terrestrial, Atmospheric and Oceanic Sciences, 33, 1-13.
    Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. Journal of Applied Meteorology and Climatology, 18, 1016-1022.
    Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. Journal of Climate, 12, 2538-2550.
    Hersbach, H. a. D., D, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, 147, 7.
    Inoue, K., and L. Back, 2015a: Column-integrated moist static energy budget analysis on various time scales during TOGA COARE. Journal of the Atmospheric Sciences, 72, 1856-1871.
    Inoue, K., and L. E. Back, 2015b: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. Journal of the Atmospheric Sciences, 72, 4148-4166.
    ——, 2017: Gross moist stability analysis: Assessment of satellite-based products in the GMS plane. Journal of the Atmospheric Sciences, 74, 1819-1837.
    Khouider, B., and A. J. Majda, 2008: Equatorial convectively coupled waves in a simple multicloud model. Journal of the Atmospheric Sciences, 65, 3376-3397.
    Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. Journal of Geophysical Research: Atmospheres, 116, D21117.
    Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115, 1407-1436.
    Koch, S. E., M. DesJardins, and P. J. Kocin, 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. Journal of Applied Meteorology and Climatology, 22, 1487-1503.
    Lindzen, R. S., 1974: Wave-CISK in the tropics. Journal of Atmospheric Sciences, 31, 156-179.
    Lu, W., and P.-C. Hsu, 2017: Factors controlling the seasonality of the Madden-Julian Oscillation. Dynamics of Atmospheres and Oceans, 78, 106-120.
    Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of Atmospheric Sciences, 28, 702-708.
    Majda, A. J., and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. Journal of the Atmospheric Sciences, 66, 373-392.
    Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. Journal of Climate, 22, 711-729.
    Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review, 115, 3-12.
    Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. Journal of Atmospheric Sciences, 51, 1876-1894.
    Randel, W. J., F. Wu, and A. Podglajen, 2021: Equatorial Waves, Diurnal Tides and Small‐Scale Thermal Variability in the Tropical Lower Stratosphere From COSMIC‐2 Radio Occultation. Journal of Geophysical Research: Atmospheres, 126, e2020JD033969.
    Raymond, D. J., and Ž. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus A: Dynamic Meteorology and Oceanography, 59, 627-640.
    Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The mechanics of gross moist stability. Journal of Advances in Modeling Earth Systems, 1, 9.
    Ren, P., D. Kim, M.-S. Ahn, D. Kang, and H.-L. Ren, 2021: Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products. Journal of Climate, 34, 2977-3001.
    Ruston, B., and S. Healy, 2021: Forecast impact of FORMOSAT‐7/COSMIC‐2 GNSS radio occultation measurements. Atmospheric Science Letters, 22, e1019.
    Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. Journal of the Atmospheric Sciences, 51, 2207-2224.
    Schreiner, W. S., and Coauthors, 2020: COSMIC‐2 radio occultation constellation: First results. Geophysical Research Letters, 47, e2019GL086841.
    Slingo, J., D. Rowell, K. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden‐Julian Oscillation and its relationship with El Niño. Quarterly Journal of the Royal Meteorological Society, 125, 583-609.
    Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. Journal of the atmospheric sciences, 58, 3650-3665.
    Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. Journal of Climate, 26, 1130-1151.
    Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. Journal of the atmospheric sciences, 51, 1386-1400.
    Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly weather review, 132, 1917-1932.
    Wilson, E. A., A. L. Gordon, and D. Kim, 2013: Observations of the Madden Julian oscillation during Indian Ocean dipole events. Journal of Geophysical Research: Atmospheres, 118, 2588-2599.
    Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. Journal of the atmospheric sciences, 55, 1354-1372.
    Zeng, Z., S. P. Ho, S. Sokolovskiy, and Y. H. Kuo, 2012: Structural evolution of the Madden‐Julian Oscillation from COSMIC radio occultation data. Journal of Geophysical Research: Atmospheres, 117, D22108.
    Zhang, C., 2005: Madden‐julian oscillation. Reviews of Geophysics, 43, RG2003.

    QR CODE
    :::