| 研究生: |
林育昭 Yu-Chao Lin |
|---|---|
| 論文名稱: |
砷化銦/銻化鋁高電子遷移率場效電晶體製程開發與元件特性之研究 Device Fabrication and Characterization of InAs/AlSb High Electron Mobility Transistors |
| 指導教授: |
林恒光
Heng-Kuang Lin 詹益仁 Yi-Jen Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 砷化銦/銻化鋁 、扭結效應 、高電子遷移率場效電晶體 |
| 外文關鍵詞: | InAs/AlSb, HEMT, kink effect |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
InAs因擁有高電子遷移率、高電子飽和速度及低能隙,故適於應用在低功率和高速的電子元件;然而,在高電場下引發衝擊離化所產生的電洞將因InAs/AlSb的第二型能帶對齊方式而無法侷限於通道層,造成了元件輸出電導隨著汲極電壓上升而增加的缺點。本論文除了敘述元件的製程發展和探討元件特性外,也提出改善元件kink效應的方式。
製程發展包含歐姆接觸、元件隔離與鈍化製程。在300 ℃維持20秒的快速熱退火條件可製作出低於0.1 Ω-mm的歐姆接觸電阻;透過元件隔離製程後隨即覆蓋SiO2鈍化層改善了AlxGa1-xSb材料所造成的不穩定及元件漏電流。傳統Si3N4鈍化實驗上則得到的最佳鈍化條件為300 ℃。
元件特性上,在超薄n+-InAs摻雜及SiO2鈍化的元件可得到103.3 mV/dec的次臨界斜率;閘極長度為2.25 mm的元件得到63 GHz-mm的fT - Lg乘積,而Si3N4鈍化後,Te面摻雜的元件之汲極電流可到達320 mA/mm。在kink效應的改善上,透過InAsSb/AlSb HEMT的第一型能帶對齊方式可有效地將kink電流從汲極電壓為0.35 V改善至0.6 V。最後也設計不同的場效電板(Field plate)來抑制InAs/AlSb HEMT元件上的kink效應。
High mobility, high peak velocity, and small bandgap associated with the InAs channel material are suitable for low power and high speed applications. However, large amount of holes are generated by impact ionization and result in serious kink effect and increased gate currents. In the thesis, we develop processes for device fabrication and characterize dc and rf properties of the InAs/AlSb HEMTs.
The device development includes ohmic contact, mesa isolation, and passivation. Using rapidly thermal annealing at 300 ℃ for 20s, ohmic contact resistance as low as 0.1 Ω-mm is achieved. To improve chemical stability of mesa floor and side wall, we perform 1st passivation immediately after defining the device mesa. Gate leakage is thus improved. Optimized passivation condition for conventional Si3N4 passivant deposited after Schottky gate is 300 ℃.
For the HEMT structure using a thin n+-InAs as modulation doping sheet and fabricated by the developed passivation scheme, low subthreshold slope of 103.3 mV/dec. and high fT - Lg product of 63 GHz-mm is obtained in a device with 2.25 mm gate length. It is observed the device with Si3N4 passivation yields enhanced driving current, which are attributed to increased carrier density and electric field. As for the kink current improvement, type-I InAsSb/AlSb HEMTs and implementation of dual gate both effectively improve the kink effect.
[1] L.D. Nguyen, L.E. Larson, U.K. Mishra, “Ultra-high speed modulation-doped field- effect transistors : a tutorial review,” Proc. of the IEEE, vol. 80, pp. 494-518, Apr, (1992).
[2] N. Moll, M.R. Hueschen, and A. Fischer-Colbrie, “Pulsed doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Dev., vol. 35, pp. 878-886, (1988).
[3] L.D. Nguyen, A.S. Brown, M.A. Thompson, and L.M. Jelloian, “50 nm self-aligned-
gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Dev., vol. 39, pp. 2007-2014, (1992).
[4] K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Mimura, S. Hiyamizu and T. Matsui, “550 GHz- pseudomorphic InP-HEMTs with reduced source-drain resistance,” Proc. 61st Device Research Conference, pp. 145-146, June, (2003).
[5] J.B. Boos, W. Kruppa, B.R. Bennett, D. Park, S.W. Kirchoefer et al., “AlSb/InAs HEMTs for low-voltage, high-speed applications,” IEEE Trans. Electron. Devices, vol. 45, pp. 1869–1875, (1998).
[6] C. Nguyen, B. Brar, C.R. Bolognesi, J.J. Pekarik, H. Kroemer, and J.H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, pp. 255-258, (1993).
[7] C.A. Chang, R. Ludeke, L.L. Chang, L. Esaki, “Molecular-beam epitaxy (MBE) of InGaAs and GaSbAs,” Appl. Phys. Lett., vol. 31, pp. 759–761, (1977).
[8] M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata,“Molecularbeam epitaxy of GaSb and GaSbAs,” Jpn. J. Appl. Phys., vol. 17, pp. 2091–2096, (1978).
[9] R. Ludeke, “Electronic properties of (100) surfaces of GaSb and InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, pp. 304–314, (1978).
[10] G. Tuttle, H. Kroemer, J.H. English, “Electron concentrations and mobilities in AlSb/InAs/ AlSb quantum wells,” J. Appl. Phys., vol. 65, pp. 5239–5242, (1989).
[11] G. Tuttle, H. Kroemer, J.H. English, “Effects of interface layer sequencing on the transport-properties of InAs/AlSb quantum wells evidence for antisite donors at the InAs/AlSb interface,” J. Appl. Phys., vol.67, pp. 3032–3037, (1990).
[12] C.R. Bolognesi, H. Kroemer, J.H. English, “Well width dependence of electron- transport in molecular-beam epitaxially grown InAs/AlSb quantum-wells,” J. Vac. Sci Technol, B, vol. 10, pp. 877–879, (1992).
[13] J.B. Boos, W. Kruppa, B.R. Bennett, D. Park, S.W. Kirchoefer, R. Bass,et al, ”AlSb/InAs HEMT_s for low-voltage, high-speed applications,” IEEE Trans. Electron. Dev. vol. 45, pp. 1869–1875, (1998).
[14] R. Venkatasubramanian, D.L. Dorsey, K. Mahalingam, ”Heuristic rules for group IV dopant site selection in III–V compounds,” J. Cryst. Growth. vol. 175 pp. 224–228, (1997).
[15] Y. Zhao, M.J. Jurkovic, W.I. Wang, “Kink-free characteristics of AlSb/InAs high electron mobility transistors with planar Si doping beneath the channel,” IEEE Trans. Electron. Dev. vol. 45, pp. 341–342, (1998).
[16] C.R. Bolognesi, M.W. Dvorak, D.H. Chow, “High-transconductance delta-doped InAs/ AlSb HFET_s with ultrathin silicon-doped InAs quantum well donor layer,” IEEE Electron. Dev. Lett. vol. 19, pp. 83–85, (1998).
[17] B.R. Bennett, M.J. Yang, B.V. Shanabrook, J.B. Boos, D. Park,”Modulation doping of InAs/AlSb quantum wells using remote InAs donor layers,” Appl. Phys. Lett. vol. 72, pp. 1193–1195, (1998).
[18] C.R. Bolognesi, J.E. Bryce, D.H. Chow, “InAs channel heterostructurefield effect transistors with InAs/AISb short-period superlattice barriers,” Appl. Phys. Lett. vol. 69, pp.3531–3533, (1996).
[19] S. Subbanna, G. Tuttle, H. Kroemer, “N-type doping of gallium antimonide and aluminum antimonide grown by molecular-beam epitaxy using lead-telluride as a tellurium dopant source,” J. Electron. Mater. vol. 17, pp. 297–303, (1988).
[20] B.R. Bennett, R. Magno, J.B. Boos, W. Kruppa, M.G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. vol.49, pp. 1879. (2005).
[21] J.B. Boos, B.R. Bennett, W. Kruppa, D. Park, J. Mittereder, R. Bass et al., “Ohmic contacts in AlSb InAs high electron mobility transistors for low-voltage operation,” J. Vac. Sci. Technol. B., vol. 17, pp. 1022–1027 (1999).
[22] R. Tsai, M. Barsky, J.B. Boos, B.R. Bennett, J. Lee, N.A. Papanicolaou, et al, “Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics,” Proc. IEEE GaAs IC symp., pp. 294–297, (2003).
[23] J. Bergman, G. Nagy, G. Sullivan, B. Brar, C. Kadow, H.K. Lin, et al, “InAs/AlSb HFETs with fT and fmax above 150 GHz for low-power MMICs,” Proc. InP related mater conf., pp. 219–222, (2003).
[24] J. Bergman, G. Nagy, G. Sullivan, A. Ikhlassi, B. Brar, C. Kadow, et al, “Low-voltage, high-performance InAs/AlSb HEMTs with power gain above 100 GHz at 100 mV drain bias,” Dev. Res. Conf., pp. 243–244, (2004).
[25] B. Brar, “Impact ionization in InAs-AlSb heterostructure field-effect-transistors,” Ph.D. dissertation, UC Santa Barbara, (1995).
[26] H.K. Lin , “The Design, Growth, and Characterization of Antimonide-Based Composite- Channel Heterostructure Field-Effect Transistors,” Ph.D. dissertation, UC Santa Barbara, (2004).
[27] K.F. Longenbach, R. Beresford, W.I. Wang, “Application of split-gate and dual-gate field-effect transistor designs to InAs field-effect transistors,” Solid-State Electron, vol. 33, pp. 1211–1213, (1990).
[28] J.B. Boos, W. Kruppa, D. Park, “Reduction of gate current in AlSb/InAs HEMTs using a dual-gate design,” Electron Lett., vol. 32, pp. 1624–1625, (1996).
[29] C.R. Bolognesi, D.H. Chow, “InAs/AlSb dual-gate HFETs,” IEEE Electron Dev. Lett., vol. 17, pp. 534–536, (1996).
[30] T. Shibata, J. Nakata, Y. Nanishi, and M. Fujimoto, “A Rutherford Backscattering Spectroscopic Study of the Aluminum Antimonide Oxidation Process in Air,” Jpn. J. Phys., vol. 33, pp. 1767-1772, (1994).
[31] C. Gatzke, S.J. Webb, K. Fobelets and R.A. Stradling, “In situ Raman spectroscopy of the selective etching of antimonides in GaSb/AlSb/InAs heterostructures,” Semicond. Sci. Technol., vol. 13, pp. 339-403, (1998)
[32] J.O. Sullivan, S. Burgess, N. Rimmer, “Metal lift-off using physical vapour deposition,” Microelectronic Engineering, vol. 64, pp. 473–478, (2002).
[33] H.J. Ueng, D.B. Janes, K.J. Webb, “Error Analysis Leading to Design Criteria for Transmission Line Model Characterization of Ohmic Contacts,” IEEE transactions on electron devices, vol. 48, April (2001).
[34] David C. Look, Electrical Characterization of GaAs Materials and Devices, John Wiley & Sons Ltd, (1989).
[35] M. Arps, H.G. Bach, W. Passenberg, A. Umbach, and W. Schlaak, “Influence of SiN, passivation on the surface potential of GaInAs and AlInAs in HEMT structures,” IEEE Indium Phosphide and Related Materials Conference, pp.308-311, (1996).
[36] J.D. Werking, C.R. Bolognesi, L.D. Chang, C. Nguyen, E.L. Hu, and H. Kroemer, “High-transconductance InAs/AlSb heterojunction fieldeffect transistors with δ-doped AlSb upper barriers,” IEEE Electron Device Lett., vol. 13, pp. 164–166, (1992).
[37] J.B. Boos, M.J. Yang, B.R. Bennett, D. Park, W. Kruppa and R. Bass, “Low-voltage, high-speed AlSb/InAsSb HEMTs,” IEEE Electron Device Lett., Vol. 35, (1999).