跳到主要內容

簡易檢索 / 詳目顯示

研究生: 顏潤賢
Jun-hsien Yen
論文名稱: 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
The characterization of thermal electric properties for the nano/micro-grain β-Zn4Sb3 fabricated by the combination of melt spinning and vacuum hot pressing
指導教授: 鄭憲清
Jason Shian-ching Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 熱電Zn4Sb3急冷旋鑄法
外文關鍵詞: thermal electrical, Zn4Sb3, melt spinning
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • β-Zn4Sb3是一種具有成本低廉及易製備等優點的熱電材料,同時也是在350~400℃溫度區間內熱電性能最佳的熱電材料,有文獻指出其zT值在400℃時可高達1.37。但由於Zn-Sb二元合金在Zn含量35~45wt%相變化較為複雜,當微量調整成分配比就會產生其他介金屬相,傳統製備方式是以熔融擴散法持溫一段時間後水淬,利用急速冷卻方式維持元素比例並避免偏析,但是此種製程製備出的塊材會因熱應力而產生大量裂縫,導致機械性質不佳,因此,後續有研究學者嘗試利用粉末冶金的方式,將原料磨成粉末再經燒結獲得具有較佳機械性質的塊材。
    現今主流提高熱電材料的熱電性能的方式主要有兩種,摻雜及結構奈米化,本研究即是以結構奈米化作為探討方向。本研究中利用急冷旋鑄法(線速度20與30 m/s)製備具有奈米晶的β-Zn4Sb3薄帶,將其研磨成粉末後與熔融法製備的微米晶粉體互相混合並以真空熱壓法燒結成塊材。期望藉由晶粒細化效果提高材料的Seebeck係數,由於奈米/微米複合結構會造成長波聲子散射而降低材料的晶格導熱率,進而提高其zT值。研究結果顯示奈米/微米複合結構熱壓塊材的熱傳導係數會因熱擴散係數下降而降低,其中以摻雜30 wt% 急冷旋鑄粉體的熱壓塊材在兩組摻雜粉體中都表現出最低的熱傳導係數(30 m/s30%:8.00 mW/cmK,20 m/s30%:7.37 mW/cmK),但其數值和完全由急冷旋鑄粉體製備的熱壓塊材相近(30m/s:7.64 mW/cmK,20m/s:7.60 mW/cmK);摻雜粉體的塊材其zT值並沒有高於完全由急冷旋鑄薄帶的製備成的熱壓塊材,急冷旋鑄薄帶熱壓塊材有最高的zT值,20 m/s熱壓塊材在350℃時為0.97,30 m/s熱壓塊材則為1.06較於熔融粉體熱壓塊材的0.85。


    The thermoelectric(TE) material β- Zn4Sb3 has the best performance during 350~400℃. Its advantages include cheap and simply fabrication. Some research indicated that its zT value can reach 1.37 at 400℃[2]. However, Zn-Sb phase diagram shows complex phase transformation as Zn content is 35~45 wt%. In other words, it will produce other phase if composition had shift. Therefore, traditional manufacture method using melt diffusion and quenching to prevent segregation. But quenching process always results in forming many crack and crack inside the bulk β-Zn4Sb3 due to thermal chock, and then degraded mechanical properties. To resolve this problem, powder metallurgy process was selected to be the solution.
    In recent, doping and nanostructure is the major way to enhance TE performance. In this study, we select nanostructure as direction. We use two methods to make β-Zn4Sb3 powder. One is melt spinning process(20、30 m/s), which belong to one kind of rapid solidification process(RSP), to make β-Zn4Sb3 ribbon with has nano-grain. The other is melt diffusion, can make bulk β-Zn4Sb3 with large grain micrometer to nanometer. The RSP ribbons and melt diffused bulk material were grinded into powders of particle size <76 μm .Then mix these two kind powders and hot compress (HP) to make bulk samples. We wish this hybrid structure can increase the phonon scattering and decreasing the lattice thermal conductivity and then enhance zT value. The results proved that nano/micro grained structure can decrease thermal conductivity, those HP bulk sample composed of 30 wt% RSP powder and 70 wt% bulk powder have the lowest thermal conductivity(30m/s30%:8.00mW/cmK,20m/s30%:7.37:mW/cmK) among all of the TE samples in this study. However HP bulk sample composed of 100% RSP powder have similar thermal conductivity(30m/s:7.64 mW/cmK,20m/s:7.60 mW/cmK), and the zT value of RSP HP bulk sample are higher than the others. At 350℃, zT value of 30 m/s RSP HP bulk sample is 1.06;20 m/s RSP HP bulk sample is 0.97, compare the bulk HP ingot (0.85), its zT value shows significant improving.

    V 目錄 中文摘要 ...... I Abstract ...... III 目錄 ... V 圖目錄 ..... VII 表目錄 ....... IX 一、 前言 ....... 1 1.1. 緒論 ... 1 1.2. 研究動機與目的 . 3 二、 文獻回顧 ........ 6 2.1. 熱電效應概敘 ..... 6 2.1.1. Seebeck 效應 ... 8 2.1.2. Peltier 效應 ...... 9 2.1.3. 熱傳導率 ....... 10 2.1.4. 導電率 .. 11 2.1.5. Wiedemann-Franz 定律 ... 12 2.2. Zn4Sb3 ....... 13 2.2.1. Zn4Sb3 之原子組成比 ... 14 2.2.2. Zn4Sb3 之晶體結構 ....... 14 2.2.3. 熔融擴散法製備Zn4Sb3 ........ 15 2.2.4. 粉末冶金法製備Zn4Sb3 ........ 16 2.2.5. 急冷旋鑄法製備奈米晶Zn4Sb3 ..... 17 2.2.6. 摻雜其他元素的Zn4Sb3 ........ 17 三、 實驗方法與實驗設備 .... 23 3.1. 粉體製備 .. 24 3.1.1. 成分確認&相變分析 ...... 24 3.1.2. 大晶粒塊材製備 .... 24 3.1.3. 急冷旋鑄法製備具奈米晶的Zn4Sb3 薄帶 ...... 25 3.1.4. 粉體研磨及混合 .... 25 3.2. 真空熱壓成形 ... 26 3.3. 材料性質分析 ... 27 3.3.1. 示差掃描熱分析(DSC) ... 27 3.3.2. X 光繞射分析(XRD) ...... 27 3.3.3. 穿透式電子顯微鏡分析(TEM ) ....... 28 3.3.4. 掃描式電子顯微鏡分析(SEM) ........ 28 3.3.5. Seebeck 係數及電阻率量測 .... 28 VI 3.3.5.1. 試片製備 ... 28 3.3.5.2. Seebeck 係數量測 ....... 29 3.3.5.3. 導電率量測 ........ 30 3.3.6. 熱傳導係數量測 .... 30 3.3.6.1. 比熱量測 ... 31 3.3.6.2. 密度量測 ... 31 3.3.6.3. 熱擴散係數量測 32 四、 實驗結果與討論 ... 42 4.1. Zn4Sb3 比例與相變化之關聯 .... 42 4.1.1. XRD 繞射分析結果 ........ 42 4.1.2. DSC 熱分析結果 ... 43 4.2. 急冷旋鑄為結構既相變化分析 .. 45 4.2.1. DSC 熱分析結果 ... 46 4.2.2. XRD 繞射分析結果 ........ 46 4.2.3. TEM 微觀結構分析 ........ 47 4.3. 熱壓塊材分析 ... 48 4.3.1. 熱壓塊材密度 ........ 48 4.3.2. 熱壓塊材XRD 分析結果 ........ 48 4.3.3. 熱壓塊材SEM 分析結果 ........ 49 4.3.4. 熱壓塊材導電率量測 ..... 49 4.3.5. 熱壓塊材Seebeck 量測 .. 50 4.3.6. 熱壓塊材功率因子(Power factor)量測 ..... 51 4.3.7. 熱壓塊材比熱量測 52 4.3.8. 熱壓塊材熱擴散係數量測 ...... 52 4.3.9. 熱壓塊材熱傳導係數 ..... 53 五、 結論 ..... 80 六、 參考文獻 ...... 82

    [1]. G. Jeffrey Snyder, Mogens Christensen, Eiji Nishibori, Thierry Caillat,and Bo Brummerstedt Iversen, ”Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties”, N mat, Vol.3, pp.459-463, 2004
    [2]. T. Caillat, J.-P. Fleurial and A. Borshchevsky,” Preparation and thermoelectric properties of Semiconducting Zn4Sb3”, Phys. Chem. Solids ,vol.58, pp.1119–1125 , 1997.
    [3]. A. N. Qiu, L. T. Zhang, and J. S. Wu,” Crystal structure, electronic structure, and thermoelectric properties of β-Zn4Sb3 from first principles”, Phys. Rev. B 81, 2010
    [4]. Birgitte L. Pedersen, Henrik Birkedal, Mats Nygren, Poul Toft Frederiksen, and Bo B. Iversen,” The effect of Mg doping on the thermoelectric performance of Zn4Sb3”, J. Appl. Phys ,vol.105, 2009
    [5]. Q. Q. Wang, X. Y. Qin, D. Li, and T. H. Zou,” Enhancement of thermopower and thermoelectric performance through resonant distortion of electronic density of states of Zn4Sb3 doped with Sm”, J.Appl. Phys. Lett , vol.102,2013
    [6]. Dekui Qi, Xinfeng Tang, Han Li, Yonggao Yan, And Qingjie Zhang,” Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun b-Zn4Sb3”, J.Elec. Mat, vol.39,2010
    [7]. Pee-Yew Lee, Tzu-Chien Chen, Jing-Yi Huang, Huey-Lin Hsieh, Jason Shian-Ching Jang,” Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing”, J. Alloys Compd, 2013
    [8]. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G.Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial and P. Gogna,” New Directions for Low-Dimensional Thermoelectric Materials”, Adv. Mater, vol.19, pp.1043-1053, 2007
    [9]. G. Jeffrey Snyder and Eric S. Toberer, “Complex thermoelectric materials”, Nat .Mater, vol.7, pp.105-114, 2008
    [10]. M. Tapiero, S. Tarabichi, J.G. Gies, C. Noguet, J.P. Zielinger,M. Joucla , J.L. Loison And M. Robino, ” Preparation And Characterization Of Zn4Sb3”, sol. Energ. Mater, vol.12, pp.257-274,1985
    [11]. Fouzia Adjadj, El-djemai Belbacha, Malek Bouharkat, “Differential calorimetric analysis of the binary system Sb–Zn”, J. Alloys Compd, vol.430, pp.85-91, 2007
    [12]. Yurij Mozharivskyj, Alexandra O. Pecharsky, Sergey Bud’ko, and Gordon J. Miller,” A Promising Thermoelectric Material: Zn4Sb3 or Zn6-äSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-äSb”, Chem. Mater, pp.1580-1589, 2004
    [13]. Go Nakamoto, Keisuke Kinoshita, Makio Kurisu, “Thermal expansion anomalies at high temperatures near stoichiometric Zn4Sb3 composition”, Alloys Compd, vol.436, pp.65-68, 2007
    [14]. H. Okamoto,” Sb-Zn (Antimony-Zinc)”, JPED, vol.29, 2008
    [15]. Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel, Eric S. Toberer, G. Jeffrey Snyder and Johan Taftø,” Nanostructuring in b-Zn4Sb3 with variable starting Zn compositions” , Phys. Status Solidi, vol.A 208, pp.1652-1657,2011
    [16]. Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel and Johan Taftø, “Nanovoids in thermoelectric b-Zn4Sb3 A possibility for nanoengineering via Zn diffusion”, Acta Materialia, vol.59, pp.5266–5275, 2011
    [17]. Fausto Cargnoni, Eiji Nishibori, Philippe Rabiller, Luca Bertini, Jeffrey Snyder, Mogens Christensen, Carlo Gatti, and Bo Brummerstadt Iversen, ” Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide, Zn4Sb3: ACombined Maximum Entropy Method X-ray Electron Density and AbInitio Electronic Structure Study”, Chem. Eur. J, vol.10, pp.3861-3870, 2004
    [18]. Min-Seok Song, Soon-Mok Choi and Won-Seon Seo, ”Thermoelectric and Mechanical Properties of Zn4Sb3 Polycrystals Sintered by Spark Plasma Sintering”, J. Korean Phy. Soc,vol.60, pp.1735-1740, 2012
    [19]. Soon-Chul Ur, Philip Nash And Il-Ho Kim, “Mechanical alloying and thermoelectric properties of Zn4Sb3”, J. Mater. Sci,vol.38, pp.3553-3558, 2003
    [20]. K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Obara, ” Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance. II. Mechanical properties”, J. Alloys Compd,vol.388, pp.118-121, 2005
    [21]. Soon-Chul Ur, Philip Nash, and Recardo Schwarz, ” Mechanical and Thermoelectric Properties of Zn4Sb3 and Zn4Sb3+Zn Directly Synthesized Using Elemental Powders”, Met. Mat, vol.11, pp.435-441, 2005
    [22]. F. Liu, X. Y. Qin, and D. Li, "The effect of In doping on thermoelectric properties and phase transition of Zn4Sb3 at low temperatures" J. Phys. D: Appl. Phys, vol.40, pp. 4974–4979, 2007
    [23]. F. Liu, X. Y. Qin, and H X Xin, " Thermoelectric properties of (Zn0.98M0.02)4Sb3 (M = Al, Ga and In) at low temperatures" J. Phys. D: Appl. Phys, vol.40, pp.7811-7816, 2007
    [24]. L. Pan, X.Y. Qin, H.X. Xin, D. Li, J.H. Sun, J. Zhang, C.J. Song, R.R. Sun, ” Enhanced thermoelectric properties of iron doped compound (Zn1-xFex)4Sb3”, Intermetallics, vol.18 , pp.1106–1110, 2010
    [25]. Limei Zhou, Wei Li, Jun Jiang,∗, Ting Zhang, Yong Li, Gaojie Xu, Ping Cui, “Effect of Bi doping on the thermoelectric properties of Zn4Sb3”, J. Alloys Compd, vol.503, pp.464-467, 2010
    [26]. B. L. Pedersen, H. Birkedal, E. Nishibori, A. Bentien,,M. Sakata, M. Nygren, P. T. Frederiksen, and B. B. Iversen, ” Hg0.04Zn3.96Sb3: Synthesis, Crystal Structure, Phase Transition, and Thermoelectric Properties”, Chem. Mater, vol.19, pp.6304–6311, 2007

    QR CODE
    :::