跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張原榜
Yuan-Pang Chang
論文名稱: 使用指向性圓二色光譜與多片層X光繞射技術進行daptomycin與細胞膜作用之結構研究
Structural studies on the interaction between daptomycin and membranes by oriented circular dichroism and lamellar X-ray diffraction
指導教授: 李明道
Ming-Tao Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 抗菌胜肽
外文關鍵詞: AMP
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗菌胜肽存在於動植物的免疫系統中,藉由直接與細胞膜作用來消滅入侵體內的病原體或微生物,而細胞膜的組成很難因基因突變發生變化,所以不易產生抗藥性,因此研究抗菌胜肽的抑菌機制對解決日益嚴重的抗藥性問題是一個重要的課題。

    daptomycin為環脂肽,是獲得美國FDA認證的新型結構抗菌胜肽。它會與革蘭陽氏菌的細胞膜作用導致膜通透來殺死細胞,在有鈣離子存在與細胞膜上含有phosphatidylglycerol (PG)脂質分子的情況下才具有抑菌活性。儘管經過多年的臨床使用與研究,其具體的分子作用機制仍是未知的。
    此篇研究中,我們使用指向性圓二色光譜(Oriented Circular Dichroism, OCD)來測量daptomycin在細胞膜上的二級結構的變化,進一步決定其與細胞膜的結合狀態。再使用多片層X光繞射(Lamellar X-ray Diffraction, LXD)測量daptomycin與細胞膜結合後所產生的厚度變化。

    OCD的結果顯示,在PG與鈣離子都存在的情況下,daptomycin的OCD光譜在232(nm)附近會有明顯翻轉,其光譜翻轉情形與daptomycin和鈣離子濃度有關。藉由分析其光譜翻轉,發現與細胞膜結合的daptomycin超過臨界濃度,daptomycin會改變其與細胞膜的結合狀態;且確認了daptomycin與鈣離子的化學劑量比例約為1到2之間。LXD的結果顯示,與daptomycin作用會使細胞膜變薄,而與鈣離子作用會使細胞膜變厚。在daptomycin、PG與鈣離子並存的情況下,細胞膜則會變厚,我們提出不同模型進行計算來解釋細胞膜厚度的變化,進一步討論daptomycin、鈣離子與細胞膜的作用。


    Antimicrobial peptides are widely used by animals and plants in their innate immune systems to eliminate invading pathogens or microbes via directly targeting to their membranes. The composition of the membrane is difficult to be changed by gene mutation so that it is rare to exhibit antibiotic resistance. Therefore, studies on the antibacterial mechanism of antibacterial peptides is an key issue to solve the serious problem of antibiotic resistance.
    Daptomycin, a cyclic lipopeptide, represents a new structural class of the FDA approved antibiotics. It interacts with the cytoplasmic membranes of Gram-positive pathogens causing membrane permeabilization to kill cells. The antibiotic activity is calcium ion dependent and correlates with the targeted membrane’s content of phosphatidylglycerol (PG), otherwise its underlying molecular mechanism is so far unknown in despite of clinical usages and researches for many years. Here we used oriented circular dichroism (OCD) to probe the change of second structure to determine the binding states of daptomycin in membranes. Lamellar X-ray diffraction (LXD) was used to monitor the thickness change of membrane induced by daptomycin binding.
    In the coexistence of daptomycin, PG and calcium ions, the result shows that OCD spectra of daptomycin will be significantly reversed around 232 (nm) and the reversed spectra is correlated to the concentrations of daptomycin as well as calcium ions. Consequently, it indicates that the concentration of binding daptomycin excess a threshold, daptomycin will change its state. And the stoichiometric ratio of daptomycin to calcium was confirmed between 1 and 2. The LXD result shows that daptomycin induced membrane thinning and calcium ions induced membrane thickening, respectively. In the coexistence of daptomycin, PG and calcium ions, membrane thickening was observed. In this study, we attempt to propose different models to fit experimental data to clarify the change of membrane thickness in different concentrations of daptomycin and calcium ions. Finally, the daptomycin/calcium ion/membrane interaction will be discussed.

    目錄 中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 符號與縮寫說明 ix 一、前言 1 1-1 細胞膜 1 1-2 抗菌胜肽 4 1-3 daptomycin 5 1-4 實驗目的 8 二、材料與實驗方法 9 2-1 實驗材料 9 2-2 樣品製備 11 2-3 實驗儀器 15 2-4 圓二色光譜儀(Circular dichroism, CD) 15 2-5 指向性圓二色光譜(Oriented Circular dichroism, OCD) 15 2-5-1 實驗步驟 17 2-6 多片層X光繞射技術(Lamellar X-ray Diffraction, LXD) 19 2-6-1 LXD 實驗原理與分析 19 2-6-2 LXD實驗方法 22 三、分析與討論 24 3-1 指向性圓二色光譜(OCD)結果分析與討論 24 3-1-1 數據處理 24 3-1-2 比較CD與OCD的結果 27 3-1-3 不同daptomycin與鈣離子濃度的OCD結果 28 3-1-4 分析實驗數據 31 3-2 多片層X光繞射實驗結果分析與討論 35 3-2-1 數據處理 35 3-2-2 daptomycin與脂質雙層膜的作用 45 3-2-3 鈣離子與脂質雙層膜的作用 45 3-2-4 daptomycin、鈣離子與DOPC/PG(7/3)脂質雙層膜的作用 46 3-2-5 模型 I 46 3-2-6 模型 II 49 3-2-7 模型 III 52 四、結論 56 參考文獻 58

    1. Neil A. Campbell , J.B.R., et al., Biology, 8th Edition. 2008: p. 125-139.
    2. Robert Bear, D.R. , et.al., Principles of Biology. 2016. 1: p. 319-330.
    3. Phillipe Bulet*, C.H., Jean-Luc Dimarcq, DanieÂle Ho mann, Antimicrobial peptides in insects; structure and function. 1999.
    4. Mahlapuu, M., et al., Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Frontiers in Cellular and Infection Microbiology, 2016. 6.
    5. Sato, H. and J.B. Feix, Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic alpha-helical antimicrobial peptides. Biochim Biophys Acta, 2006. 1758(9): p. 1245-56.
    6. Yang, L., Harroun, T. A., Weiss, T. M., Ding, L., Huang, H. W., Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores. Biophysical, 2001. 81: p. 1475–85.
    7. Paolo, R.L.B., P.C.; Tieleman,D.P.; Sansom,M,S, Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. 1999.
    8. Kapoor, G., S. Saigal, and A. Elongavan, Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 2017. 33(3): p. 300.
    9. Galdiero, S., et al., Peptide-lipid interactions: experiments and applications. Int J Mol Sci, 2013. 14(9): p. 18758-89.
    10. T.C.TerwilligerL.WeissmanD.Eisenberg, The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. 1982.
    11. Vogel, H.a.J., F. , The steucture of melittin in membranes. Biophys. J. 50,573-582., 1986.
    12. Ramamoorthy, A., et al., Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophys J, 2006. 91(1): p. 206-16.
    13. Zhang, T., et al., Daptomycin forms cation- and size-selective pores in model membranes, in Biochim Biophys Acta. 2014. p. 2425-30.
    14. Zhang, T., et al., Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462. Biochim Biophys Acta, 2013. 1828(2): p. 302-8.
    15. Müller, A., et al., Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences, 2016. 113(45): p. E7077-E7086.
    16. Lee, M.-T., et al., Molecular State of the Membrane-Active Antibiotic Daptomycin. Biophysical Journal, 2017. 113(1): p. 82-90.
    17. Liu, B. and M. Karttunen, Lipopeptide daptomycin: Interactions with bacterial and phospholipid membranes, stability of membrane aggregates and micellation in solution. Biochim Biophys Acta Biomembr, 2018.
    18. Ball, L.-J. et al. NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Org. Biomol. Chem. 2, 1872–1878 (2004).
    19. A. Yakubovich, I. Solov’yov, A. Solov’yov, W. Greiner, Ab initio theory of helix↔coil phasetransition. Eur. Phys. J. D.46, 215–225, 2007
    20. Chen, Y.F., et al., Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry, 2014. 53(33): p. 5384-92.
    21. Lee, M.-T., et al., Comparison of the Effects of Daptomycin on Bacterial and Model Membranes. Biochemistry, 2018. 57(38): p. 5629-5639.
    22. Jung, D., et al., Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol, 2004. 11(7): p. 949-57.
    23. Pogliano, J., N. Pogliano, and J.A. Silverman, Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol, 2012. 194(17): p. 4494-504.
    24. Cottagnoud, P., Daptomycin: a new treatment for insidious infections due to gram-positive pathogens. Swiss Med Wkly,, 2008. 138(7-8): p. 93-9.
    25. Silverman, J.A., N.G. Perlmutter, and H.M. Shapiro, Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2003. 47(8): p. 2538-2544.
    26. Humphries, R.M., Pollett, S., Sakoulas, G., A Current Perspective on Daptomycin for the Clinical Microbiologist. Clinical Microbiology 2013. 26(4): p. 759-80.
    27. Lee, M.T., Sun, T. L., Hung, W. C., Huang, H. W., Process of inducing pores in membranes by melittin. PNAS, 2013. 110: p. 14243–48.
    28. Zasloff, M., Antimicrobial peptides of multicellular organisms. NATURE, 2002. 415: p. 389-95.
    29. Chen, F.Y., Lee, M. T., Huang, H. W.,, Evidence for Membrane Thinning Effect as the Mechanism for Peptide-Induced Pore Formation. Biophysical Society, 2003. 84(6): p. 3751-58.
    30. Jung, D., et al., Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes. Chem Phys Lipids, 2008. 154(2): p. 120-8.
    31. Muraih, J.K., et al., Oligomerization of daptomycin on membranes. Biochim Biophys Acta, 2011. 1808(4): p. 1154-60.
    32. Muraih, J.K., et al., Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation. Biochim Biophys Acta, 2012. 1818(3): p. 673-8.
    33. Hindler, J.A., et al., In vitro activity of daptomycin in combination with beta-lactams, gentamicin, rifampin, and tigecycline against daptomycin-nonsusceptible enterococci. Antimicrob Agents Chemother, 2015. 59(7): p. 4279-88.
    34. Muraih, J.K. and M. Palmer, Estimation of the subunit stoichiometry of the membrane-associated daptomycin oligomer by FRET. Biochim Biophys Acta, 2012. 1818(7): p. 1642-7.
    35. Huang, H.W., Action of Antimicrobial Peptides:  Two-State Model†. Biochemistry, 2000. 39(29): p. 8347-8352.
    36. 陳方玉、黃惠文,「以X光多片層繞射研究生物薄膜」,科儀新知,18卷,六期,P22-26,1997。.
    37. Torbet, J.a.W., M. H. F.. " X-ray diffraction studies of lecithin bilayers." J. Theor. Biol., Vol. 62, Issue 2, pp. 447 – 458 (1976). .
    38. Blaurock, A. E.. “Structure of the nerve myelin membrane: Proof of the low-resolution profile.” J. Mol. Biol., Vol. 56, pp. 35 – 52 (1971).
    39. Warren, B.E., X-ray diffraction. Dover ed. 1990, New York: Dover Publications. vii, 381 p. .
    40. Wu, Y., et al., “X-Ray Diffraction Study of Lipid Bilayer Membranes Interacting with Amphiphilic Helical Peptides: Diphytanoyl Phosphatidylcholine with Alamethicin at Low Concentrations.”, Biophys. J., Vol. 68, pp. 2361-2369, 1995.
    41. K.S. Rotondi, L.M. Gierasch, A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers, 80 (2005), pp. 374-385.
    42. Taylor S.D., Palmer M. The action mechanism of daptomycin. Bioorg. Med. Chem. 2016;24:6253–6268.

    QR CODE
    :::