| 研究生: |
林文明 Wen-Ming Lin |
|---|---|
| 論文名稱: |
右設限存活資料中每日可服劑量之統計推論 |
| 指導教授: |
陳玉英
Yuh-Ing Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 標竿劑量 、額外風險 、Cox比例風險模式 、每日可服劑量 、限制平均壽命 |
| 外文關鍵詞: | Extra risk, Restricted Mean Life Time, ADI, Cox Proportional Hazard Model |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
毒物研究中每日可服劑量(Allowable Daily Intakes;簡稱ADI)之決定是一項重要的課題,因為服用過多的劑量將會有毒性反應產生。本文研究如何就多組符合Cox比例風險模式之右設限資料,根據機率衡量及限制平均壽命衡量建立額外風險,並且在一定的安全閥值下,估計毒物標竿劑量及其信賴下限,做為ADI的估計值。之後,藉由模擬研究探討額外風險要求下機率衡量與限制平均壽命衡量建構的標竿劑量信賴下界之覆蓋機率及其與真正標竿劑量的偏誤。最後,以一實例說明本文所提方法之應用。
In toxicity study, how to determine ADI (Allowable Daily Intakes) is an important issue because of taking the dose over acceptable region may cause an abnormal adverse. According to safe threshold values demand, we use two statistical methods to estimate ADI - one is probability measurement, and the other is restricted mean life time measurement under Cox proportional hazard model for right-censored survival data. We further conduct a simulation study to investigate the coverage probability of the lower confidence limit for benchmark dose (BMD) and bias under these two measurements. Finally, the use of those procedures is illustrated with a right-censored survival data
1.Al-Saidy,Obaid M.,and Piegorsch,Walter W., and West ,R. Webster, and Daniela K.Nitcheva. (2003). Confidence Bands for Low-Dose Risk Estimation with Quantal Response Data. Biometrics 59 ,1056-1062.
2.Cox, D. R. (1972). Regression Models and Life Tables. Journal of the Royal Statistical Society, Ser. B 34,187-220.
3.Crump,Kenny S. (1984). A New Method for Determining Allowable
Daily Intakes. Fundamental and applied toxicology 4, 854-87.
4.Casella, G. and Berger, R.L. (2002). Statistical Inference. Duxbury.
5.Gaylor, D.W. and Slikker, W. L. (1990). Risk Assessment for Neurotoxic Effects. NeuroToxicology 11,211-218.
6.Gaylor, David W. (1996). Quantalization of Continuous Data for Benchmark Dose Estimation. Regulatory toxicology and pharma-
cology 24, 246-250.
7.Irwin, J. O.(1949).The Standard Error of an Estimate of Expectational
Life. Journal of Hygiene 47,188-189.
8.Kaplan, E. L. and Meier, P. (1958). Nonparameteric estimator from incomplete observations. Journal of the American Statistical Association 53,457-481.
9.Karrison ,Theodore (1987). Restricted mean life with adjustment for
covariates. Journal of the American Statistical Association 82, 1169-
1176.
10.Kodell, Ralph L. and West , Ronnie W. (1993). Upper Confidence Limits on Excess Risk for Quantitative Responses. Risk Analysis 13, 177-182.
11.Piegorsch,Walter W. and West,R. Webster and Pan ,Wei and Kodell ,Ralph L. (2005). Low dose risk estimation via simultaneous statistical inferences. Journal of the Royal Statistical Society, Ser. C 54 ,245-258
12.Ryan, Louise (1992). Quantitative Risk Assessment for Developmental Toxicity. Biometrics 48, 163-174.
13.Upton, A.C., Allen, R.C., Brown, R.C., Clapp, N.K., Conklin, J.W.,
Cosgrove, G.E., Darden, Jr., E.B., Kastenbaurm, M.A., Odell, Jr., T.T., Serrano, L.J., Tyndall, R.L. and Walburg, Jr., H.E. (1969). Quantitative Experimental Study of Low-Level Radiation Carcinogensis. Radiation- Induced Cancer, International Atomic
Energy Agency, Vienna, 425-438.
14.Zucker, David M. (1998). Restricted mean life with covariates : Mod-
ification and extension of a useful survival analysis mrthod. Journal of the American Statistical Association 93,702-709.
15.王宏福 (2001) ,右設限資料之下每日可服劑量之研究,國立成
功大學統計學研究所。
16.革惠雯 (2000),右設限資料之下每日可服劑量之研究,國立中央
大學統計研究所。
17.離輻射防護http://www.csmu.edu.tw/radi/public_html/laws.htm