| 研究生: |
賴允涵 Yun-han Lai |
|---|---|
| 論文名稱: |
製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究 Fabrication of the Targeting Indocyanine Green-Encapsulated PLGA Nanoparticles for Phototherapy of Breast Cancer. |
| 指導教授: |
李宇翔
Yu-Hsiang Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | PLGA奈米粒子 、靛氰綠 、光治療 、乳癌 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究我們使用微乳液法合成出包覆靛氰綠(Indocyanine Green;ICG)之聚乳酸甘醇酸(Poly(Lactic-co-Glycolic Acid);PLGA)的標靶奈米粒子(HER-2 Targeted ICG-Encapsulated PLGA Nanoparticles;HIPNPs),其中我們利用交聯反應將聚乙二醇與乳癌細胞表面受器抗體Human Epidermal Growth Factor Receptor 2 (HER-2)依序接枝在奈米粒子表面,以增進奈米粒子的生物相容性與對乳癌細胞專一標定的功能,並利用傅立葉轉換紅外線光譜儀分析粒子表面官能基與結合螢光抗體的方式來證明聚乙二醇跟乳癌抗體的成功接枝。經過儀器分析奈米粒子之平均粒徑與表面電位分別為302 1.8 nm和-15 0.15 mV;而ICG的包覆率約為70%。再來我們利用激發波長808 nm搭配強度為6 W/cm2的近紅外光雷射照射HIPNPs奈米溶液,結果顯示在含有25 μM的HIPNPs溶液中,照射2分鐘內溫度即可到達70 oC的高溫且該溫度可持續5分鐘,同時在相同雷射條件刺激下,我們測量到90單位的單態氧的釋放。接著我們將不同濃度的HIPNPs溶液與MDA-MB-453細胞一同培養24小時後分析得到細胞的存活率為90 %,以此我們可確認HIPNPs不具生物毒性。另外,藉由MDA-MB-453 (HER-2 Positive)的螢光表現量遠大於MCF-7 (HER-2 Negative)的結果,我們可確認HIPNPs對HER-2+細胞的專一性。最後,我們使用激發波長808 nm且強度為6 W/cm2的近紅外光雷射照射內吞HIPNPs的MDA-MB-453乳癌細胞5分鐘,經由計算得知細胞的存活率僅存6 %,證明了HIPNPs可有效進行光治療使乳癌細胞死亡,並有望進而發展成為一種治療癌症的材料。
The biodegradable indocyanine green (ICG)-loaded poly(lactic-co-glycolic acid) nanoparticles (IPNPs) have been successfully established by using solvent evaporation method. Furthermore we conjugated the functional molecules like Polyethylene glycol (PEG) and human epithelial receptor-2 (HER-2) antibody onto the IPNPs surface by utiliznig the EDC/NHS crosslinking method to fabricate the HER-2 targeted ICG-loaded PLGA nanoparticles (HIPNPs) for phototherapy of breast cancer cells. The ICG encapsulation efficiency was about 70 % determined from the UV-Vis spectrophotometry. The mean size and surface charge of the HIPNPs were 302 ± 1.8 nm and -15 ± 0.15mV through dynamic light scattering and zeta potential analyzer, respectively. Based on the analysis of UV-Vis spectrophotometric absorbances, the encapsulated ICG modestly disintegrated 18% and 63% while ICG freely distributed in water dramatically degraded 60% and 95% at 4 and 37℃ for 48 h, respectively, manifesting the ICG molecules in HIPNPs can be protected by PLGA matrix. In addition, the bulk temperature dramatically increased 45℃ and the singlet oxygen released in the presence of HIPNPs (ICG concentration = 25 μM) under 808 nm-laser exposure with intensity of 6 W/cm2 for 5 min has successfully proved the photothermal and photodynamic function of ICG. Finally through the cellular assay using MCF-7 (HER-2 negative), and MDA-MB-453 (HER-2 positive), we found HIPNPs can specifically target to the HER-2 protein and didn’t have biotoxicity. Even, the nmber of survival MDA-MB-453 was significantly low by treating HIPNPs with identical laser exposure, identifying the effectiveness of phototherapy of HIPNPs. We demonstrated the developed HIPNPs enable to provide the theranostic efficacy for breast cancer cells
1.Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8-9): p. 762-798.
2.李喬賓, PLGA 奈米粒子之製備及表面修飾對細胞標的化能力之探討. 2004.
3.Maurus, P.B. and C.C. Kaeding, Bioabsorbable implant material review. Operative Techniques in Sports Medicine, 2004. 12(3): p. 158-160.
4.林宜美, 幾丁質摻合聚乳酸酯微粒於藥物釋放系統之研究. 2002.
5.Dinarvand, R., et al., Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine, 2011. 6: p. 877-95.
6.Wu, L. and J. Ding, In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2004. 25(27): p. 5821-30.
7.Li, S. and M. Vert, Crystalline oligomeric stereocomplex as an intermediate compound in racemic poly(DL-lactic acid) degradation. Polymer International, 1994. 33(1): p. 37-41.
8.Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17(2): p. 103-114.
9.Langer, J.A.T.R., Erosion kinetics of hydrolytically degradable polymers. 1993: p. Vol. 90, pp. 552-556,.
10.Mondrinos, M.J., et al., Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering. Biomaterials, 2006. 27(25): p. 4399-4408.
11.Chiari, C., et al., A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis and Cartilage, 2006. 14(10): p. 1056-1065.
12. 刘洪泽, et al., 本体溶蚀型药物传输系统的药物释放数学模型. 2009.
13. van der Zee, J., Heating the patient: a promising approach? Annals of oncology, 2002. 13(8): p. 1173-1184.
14. Matylevitch, N.P., et al., Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury. The American journal of pathology, 1998. 153(2): p. 567-577.
15. Henderson, B.W. and T.J. Dougherty, How does photodynamic therapy work? Photochemistry and photobiology, 1992. 55(1): p. 145-157.
16. Barth, B.M., et al., Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. Acs Nano, 2011. 5(7): p. 5325-5337.
17. Rousseau, J., et al., Biological activities of phthalocyanines: XIII: Synthesis tumor uptake and biodistribution of 14C-labeled disulfonated and trisulfonated gallium phthalocyanine in C3H mice. Journal of Photochemistry and Photobiology B: Biology, 1990. 6(1–2): p. 121-132.
18. Gomer, C.J. and A. Ferrario, Tissue Distribution and Photosensitizing Properties of Mono-l-aspartyl Chlorin e6 in a Mouse Tumor Model. Cancer Research, 1990. 50(13): p. 3985-3990.
19. Richter, A.M., et al., Biodistribution of tritiated benzoporphyrin derivative (3H-BPD-MA), a new potent photosensitizer, in normal and tumor-bearing mice. Journal of Photochemistry and Photobiology B: Biology, 1990. 5(2): p. 231-244.
20. Athar, M., et al., A novel mechanism for the generation of superoxide anions in hematoporphyrin derivative-mediated cutaneous photosensitization. Activation of the xanthine oxidase pathway. J Clin Invest, 1989. 83(4): p. 1137-43.
21. Gupta, P.K., Light–Tissue Interactions. Handbook of Photomedicine, 2013: p. 25.
22. Cairnduff, F., et al., Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. British journal of cancer, 1994. 69(3): p. 605.
23. Svaasand, L.O., Optical dosimetry for direct and interstitial photoradiation therapy of malignant tumors. Progress in clinical and biological research, 1984. 170: p. 91.
24. Wilson, B.C., W.P. Jeeves, and D.M. Lowe, In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochemistry and photobiology, 1985. 42(2): p. 153-162.
25. Firey, P. and M. Rodgers, PHOTO‐PROPERTIES OF A SILICON NAPHTHALOCYANINE: A POTENTIAL PHOTOSENSITIZER FOR PHOTODYNAMIC THERAPY*. Photochemistry and photobiology, 1987. 45(4): p. 535-538.
26. Borland, C., et al., Photophysical studies of bacteriochlorophyll a and bacteriopheophytin a—singlet oxygen generation. Journal of Photochemistry and Photobiology B: Biology, 1987. 1(1): p. 93-101.
27. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535-545.
28. Miwa, M., The principle of ICG fluorescence method. Open Surg Oncol J, 2010. 2: p. 26-28.
29. Desmettre, T., J. Devoisselle, and S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of ophthalmology, 2000. 45(1): p. 15-27.
30. Benson, R. and H. Kues, Fluorescence properties of indocyanine green as related to angiography. Physics in medicine and biology, 1978. 23(1): p. 159.
31. Flower, R.W., Evolution of indocyanine green dye choroidal angiography. Optical Engineering, 1995. 34(3): p. 727-736.
32. Freeman, W.R., et al., Simultaneous indocyanine green and fluorescein angiography using a confocal scanning laser ophthalmoscope. Archives of ophthalmology, 1998. 116(4): p. 455-463.
33. Iijima, T., et al., Cardiac output and circulating blood volume analysis by pulse dye-densitometry. Journal of clinical monitoring, 1997. 13(2): p. 81-89.
34. Nonami, T., et al., Blood loss and ICG clearance as best prognostic markers of post-hepatectomy liver failure. Hepato-gastroenterology, 1998. 46(27): p. 1669-1672.
35. Saxena, V., M. Sadoqi, and J. Shao, Degradation kinetics of indocyanine green in aqueous solution. Journal of pharmaceutical sciences, 2003. 92(10): p. 2090-2097.
36. Yu, J., et al., Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chemistry of materials, 2007. 19(6): p. 1277-1284.
37. JM, D., et al., Fluorescence properties of indocyanin green-part 1.: in-vitro study with micelles and liposomes.
38. Bennett, T.J. and C.J. Barry, Ophthalmic imaging today: an ophthalmic photographer's viewpoint–a review. Clinical & experimental ophthalmology, 2009. 37(1): p. 2-13.
39. Zhou, J.F., M.P. Chin, and S.A. Schafer. Aggregation and degradation of indocyanine green. in OE/LASE'94. 1994. International Society for Optics and Photonics.
40. Landsman, M., et al., Light-absorbing properties, stability, and spectral stabilization of indocyanine green. Journal of applied physiology, 1976. 40(4): p. 575-583.
41. Mordon, S., et al., Indocyanine green: physicochemical factors affecting its fluorescencein vivo. Microvascular research, 1998. 55(2): p. 146-152.
42. van den Biesen, P.R., et al., Yield of fluorescence from indocyanine green in plasma and flowing blood. Annals of biomedical engineering, 1995. 23(4): p. 475-481.
43. Danhier, F., et al., Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. Journal of Controlled Release, 2009. 133(1): p. 11-17.
44. Gref, R., et al., ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces, 2000. 18(3–4): p. 301-313.
45. Peracchia, M., et al., Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials, 1999. 20(14): p. 1269-1275.
46. Sun, C., R. Sze, and M. Zhang, Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A, 2006. 78(3): p. 550-7.
47. Gajendiran, M., et al., Gold nanoparticle conjugated PLGA–PEG–SA–PEG–PLGA multiblock copolymer nanoparticles: synthesis, characterization, in vivo release of rifampicin. Journal of Materials Chemistry B, 2014. 2(4): p. 418-427.
48. Wang, S., et al., Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Letters, 2002. 2(8): p. 817-822.