跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王雅萱
Ya-shan Wang
論文名稱: 異質接面雙極性電晶體VVBIC模型建立及其在射頻電路之應用
The VBIC Model Establishment and RF Circuit Application of HBTs
指導教授: 詹益仁
yjchan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 126
中文關鍵詞: 射頻電路大訊號模型異質接面雙極性電晶體
外文關鍵詞: VBIC model, HBT, RF circuit
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,在於針對異質接面雙極性電晶體的模型建立及其應用的射頻前端電路設計。
    論文的前半部,最主要是異質接面電晶體的等效模型萃取及建立與分析;為了在實際的微波電路應用,我們先得到小訊號模型參數,成功萃取出HBT的外部寄生參數及內部純質參數,四個S-參數的誤差均小於百分之十,表示出此萃取結果是正確且合乎物理意義。有了準確的小訊號模型可以提供設計低雜訊放大器、小訊號增益放大器等使用。在大訊號模型方面,我們使用Gummel-Poon Model及VBIC Model ,來達到正確模擬異質接面電晶體的要求。為了取得模型中的參數,我們藉由IC-CAP中BJT模型的模組,來處理量測的資料,進而得到InGaP/GaAs HBT初始參數值。接著再將這組參數值代入本論文中所建立的模型,以做參數萃取。最後由實際的量測結果與模擬結果作一比較,來印證本論文中所建立的模型於模擬異質接面電晶體特性的準確性;以驗証本論文所建立的模型,確實能正確模擬異質接面電晶體的特性。
    利用單晶微波積體電路的製程,用InGaP/GaAs HBT設計出一個應用於5.2GHz WLAN 系統的單端壓控振盪器。
    利用異質接面雙極性電晶體來設計出一個5.2GHz的兩級功率放大器,為了做到功率控制,調變增益。利用一射極隨耦器,配合控制電壓的調變,組合一可調增益放大器。


    第一章 導論…………………………………….…………………01 § 1.1 研究動機……………………….………………………..01 § 1.2 論文摘要………..………………………...……………..02 第二章 異質接面雙極性電晶體等效模型之建立………………..03 § 2.1 簡介…………………………………………...................03 § 2.2 異質接面雙極性電晶體元件特性…………….....……..04 § 2.3 小訊號等效模型之建立……………………...................05 § 2.3.1 寄生電感和接觸電阻之萃取………………....07 § 2.3.2 寄生電容之萃取…………………..………......10 § 2.3.3 內部參數之萃取…………………..………......13 § 2.3.4 誤差分析與模擬結果…………………..…......24 § 2.4 Gummel-Poon大訊號模型之建立……….....................26 § 2.4.1 異質接面雙極性電晶體之Gummel-Poon模 型……………………..……………………......26 § 2.4.2 Gummel-Poon模型之介紹…………………....27 § 2.4.3 共射極直流輸出特性之模擬…………………32 § 2.4.4 量測pad效應扣除…………………..………...34 § 2.4.5 大訊號模型完成…………………………..…..38 § 2.5 結果討論..…………………………………….................41 第三章 異質接面雙極性電晶體VBIC 模型之建立……………..42 § 3.1 簡介………………..…………………..………...................42 § 3.2 VBIC模型之建立……..……………………...…………....44 § 3.2.1 異質接面雙極性電晶體之大訊號模型…………...….44 § 3.2.2 VBIC模型之介紹…………….………………..……...45 § 3.2.3 寄生電阻之量測及萃取……………..……..…………48 § 3.2.3.1 射極與集極寄生電阻………………..……….…49 § 3.2.3.2 基極寄生電阻…………………...……..……..…51 § 3.2.4 順向與逆向Gummrl plot參數之萃取………..………52 § 3.2.5 類飽和效應(quasi-saturation)萃取…………….....…55 § 3.2.6 自我加熱效應(self-heating)萃取……………..…..…57 § 3.2.7 接面電容分析…………..………………………….….60 § 3.2.8 傳輸時間參數分析……………..………….............….65 § 3.2.9 S參數分析………….………………….…………...…69 § 3.2.10 大訊號模型建立…..………………….…………….…70 § 3.2.11 功率特性之模擬…..………………….………….……72 § 3.2.11.1 負載-拉移量測與模擬 (load-pull measurement)…………...…...……72 § 3.2.11.2 輸入與輸出功率關係之模擬…………………...74 § 3.2.12 三階截斷點IP3 (third-order intercept point)…...…...76 § 3.2.13 相鄰通道功率比(adjacent channel power ratio)……..78 § 3.3 結果討論………..……………………………..…………...80 第四章 微波壓控振盪器設計……………………………………..81 § 4.1 壓控振盪器簡介………..……………..…………………...81 § 4.2 壓控振盪器設計原理…………..…..……………………...82 § 4.2.1 原理簡介………………………………………………82 § 4.2.2 變容二極體……………………………………………83 § 4.3 設計步驟及模擬結果……..…………………….................85 § 4.3.1 壓控振盪器之設計………………………………..…..85 § 4.3.2 壓控振盪器之模擬結果………………………………86 § 4.3.3 電路佈局………………………………………………90 § 4.4 量測結果……………..…………………………………….92 § 4.5 結果討論…………..……………………………………….95 第五章 5.2GHz功率放大器及可調增益放大器設計………….....96 § 5.1 簡介……..……………………………………….................96 § 5.2 設計原理…………..…………………………………….....97 § 5.3 功率放大器之設計…………..………………………….....97 § 5.3.1 功率放大器之設計規格…………………………........97 § 5.3.2 功率級之設計………………………………................98 § 5.3.3 增益級之設計…………………………......................101 § 5.3.4 級間匹配……………………………………………..103 § 5.3.5 兩級功率放大器模擬結果…………………………..104 § 5.3.5.1 小訊號與功率特性模擬結果……………….....104 § 5.3.5.2 三階截斷點模擬………………..………….......106 § 5.3.6 電路佈局…………………………………………......107 § 5.4 功率放大器量測結果………………..…………………...109 § 5.4.1 小訊號與功率特性量測…………………………......110 § 5.4.2 三階截斷點量測…………………………………......113 § 5.5 可調增益放大器之設計………..………………………...111 § 5.5.1 可調增益放大器模擬結果……………………..........112 § 5.5.2 電路佈局………………………………………..........116 § 5.6 可調增益放大器量測結果………….....…………………117 § 5.7 結果討論…………..……………………………...………119 第六章 結論………………………..……………………………..120 參考文獻 …………………………………………………………..122 附錄…………………………………………………………………..126

    [1] 蘇碩彬,“異質接面雙極性電晶體之大訊號模型建立及其在功率放大器之應用,”碩士論文, 國立中央大學, 2002
    [2] Bousnina, S.; Mandeville, P.; Kouki, A.B.; Surridge, R.; Ghannouchi, F.M.;“Direct parameter-extraction method for HBT small-signal model Microwave Theory and Techniques,”IEEE Transactions on , Volume: 50 Issue: 2 , Feb 2002
    [3] Gobert, Y.; Tasker, P.J.; Bachem, K.H.;“A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistorMicrowave Theory and Techniques,”IEEE Transactions on , Volume: 45 Issue: 1 , Jan 1997
    [4] Uscola, R.; Tutt, M.;“Direct extraction of equivalent circuit model parameters for HBTs,”Microelectronic Test Structures, 2001. ICMTS 2001. Proceedings of the 2001 International Conference on , 2001
    [5] 林正國,“異質接面高移導率電晶體模擬、製作與大訊號模型之建立,”碩士論文, 國立中央大學, 2001
    [6] Breti, J.W.; Kendall, J.D.; Nathawad, L.;“Direct extraction of SPICE Gummel-Poon parameters for high frequency modeling,”Microelectronic Test Structures, 1998. ICMTS 1998., Proceedings of the 1998 International Conference on , 23-26 Mar 1998
    [7] “High-Frequency Model Tutorial,”vol.1.ICCAP manual
    [8] Huang, C.N.; Abdel-Motaleb, I.M.;
    “ A Gummel-Poon model for single and double heterojunction bipolar transistors,”Bipolar Circuits and Technology Meeting, 1989., Proceedings of the 1989 , 18-19 Sep 1989
    [9] Ingvarson, F.; Jeppson, K.O.; “A new direct extraction algorithm for intrinsic Gummel-Poon BJT model parameters, ” Microelectronic Test Structures, 1998. ICMTS 1998., Proceedings of the 1998 International Conference on , 23-26 Mar 1998
    [10] Bousnina, S.; Falt, C.; Mandeville, P.; Kouki, A.B.; Ghannouchi, F.M.;“An accurate on-wafer deembedding technique with application to HBT devices characterization,”Microwave Theory and Techniques, IEEE Transactions on , Volume: 50 Issue: 2 , Feb 2002
    [11] Xiaochong Cao; Mcmacken, J.; Stiles, K.; Layman, P.; Liou, J.J.; Oritz-Conde, A.; Moinian, S.;“Comparison of the new VBIC and conventional Gummel-Poon bipolar transistor models Electron Devices,”IEEE Transactions on , Volume: 47 Issue: 2 , Feb 2000
    [12] Tutt, M.;“GaAs based HBT large signal modeling using VBIC for linear power amplifier applications,”Bipolar/BiCMOS Circuits and Technology Meeting, 2000. Proceedings of the 2000 , 2000
    [13] Cao, X.; McMacken, J.; Stiles, K.; Layman, P.; Liou, J.J.; Sun, A.; Moinian, S.;“Parameter extraction and optimization for new industry standard VBIC model,”Advanced Semiconductor Devices and Microsystems, 1998. ASDAM ''98. Second International Conference on , 5-7 Oct 1998
    [14] Huang, G.W.; Chen, K.M.; Kuan, J.F.; Deng, Y.M.; Wen, S.Y.; Chiu, D.Y.; Wang, M.T.;“Silicon BJT modeling using VBIC model,”Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 1 , 2001
    [15] Cherepko, S.V.; Hwang, J.C.M.;“VBIC model applicability and extraction procedure for InGap/GaAs HBT,”Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , 2001
    [16] Najm, F.;“VBIC95: an improved bipolar transistor model,”IEEE Circuits and Devices Magazine , Volume: 12 Issue: 2 , Mar 1996
    [17] McAndrew, C.C.; Seitchik, J.A.; Bowers, D.F.; Dunn, M.; Foisy, M.; Getreu, I.; McSwain, M.; Moinian, S.; Parker, J.; Roulston, D.J.; Schroter, M.; van Wijnen, P.; Wagner, L.F.;“VBIC95, the vertical bipolar inter-company model,”Solid-State Circuits, IEEE Journal of , Volume: 31 Issue: 10 , Oct 1996
    [18] Dawson, D.E.; Gupta, A.K.; Salib, M.L.;“CW measurement of HBT thermal resistance,”Electron Devices, IEEE Transactions on , Volume: 39 Issue: 10 , Oct 1992
    [19] Marsh, S.P.;“Direct extraction technique to derive the junction temperature of HBT''s under high self-heating bias conditions,”Electron Devices, IEEE Transactions on , Volume: 47 Issue: 2 , Feb 2000
    [20] Yamauchi, Y.; Kamitsuna, H.; Nakatsugawa, M.; Ito, H.; Muraguchi, M.; Osafune, K.;“A 15-GHz monolithic low-phase-noise VCO using AlGaAs/GaAs HBT technology,”Solid-State Circuits, IEEE Journal of , Volume: 27 Issue: 10 , Oct 1992
    [21] Stadius, K.; Kaunisto, R.; Porra, V.; “Monolithic tunable capacitors for RF applications,”Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on , Volume: 1 , 6-9 May 2001
    [22] 黃國龍,“微波壓控振盪器之設計與製作,”碩士論文, 國立中央大學, 2002
    [23] G. D. Vendelin, et al.;“Microwave Circuit Design Using Linear andNonliner Techniques,”Jwiley, New York, chpt. 6, pp. 429-434, 1990.
    [24] Iwai, T.; Kobayashi, K.; Nakasha, Y.; Miyashita, T.; Ohara, S.; Joshin, K.;“42% high efficiency two-stage HBT power amplifier MMIC for W-CDMA cellular phone system,”Microwave Symposium Digest., 2000 IEEE MTT-S International , Volume: 2 , 2000
    [25] Hirayama, T.; Matsuno, N.; Fujii, M.; Hida, H.;“PAE enhancement by intermodulation cancellation in an InGaP/GaAs HBT two-stage power amplifier MMIC for W-CDMA,”Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2001. 23rd Annual Technical Digest , 2001
    [26] Chang-Woo Kim; Sung-Ryong Park; Young-Gi Kim;“A 2.7-v monolithic SiGe HBT variable gain amplifier for cdma applications”Radio and Wireless Conference, 2002. RAWCON 2002. IEEE , 2002
    [27] Hau, G.; Nishimura, T.B.; Iwata, N.;“High efficiency, wide dynamic range variable gain and power amplifier MMICs for wideband CDMA handsets,”IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters] , Volume: 11 Issue: 1 , Jan 2001
    [28] Chaudhry, Q.; Alidio, R.; Sakamoto, G.; Cisco, T.;“A SiGe MMIC variable gain cascode amplifier,”IEEE Microwave and Wireless Components Letters [see also IEEE Microwave and Guided Wave Letters] , Volume: 12 Issue: 11 , Nov 2002

    QR CODE
    :::