跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張軒源
Hsuan-Yuan Chang
論文名稱: 孔隙流體對滾筒中顆粒流動之影響
Effect of interstitial fluid on a granular flowing layer in the drum
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 顆粒流圓周福祿數滑脫速度液橋滾筒
外文關鍵詞: liquid bridge., slip velocity, Froude number, granular flow, drum
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顆粒流廣泛的應用於各領域中,為了簡化濕顆粒所產生複雜之物理現象,一般僅考慮乾顆粒之流動情形。本研究為了探討孔隙液體對顆粒流動的影響,以滾筒作為實驗儀器,並加入不同濃度之甘油與水之混合液,並以粒子影像分析方法作為顆粒流研究之基礎。相關之運動特性大致與前人研究相符。本研究發現在滾動流況時,主、被動層之速度分佈可視為兩段線性分佈;於較低含液量時,流動層顆粒受表面張力及液體濃度的影響改變了顆粒在乾狀態時應有的流動特徵;高含液量時,滾筒邊壁因液體產生之潤滑效應,使顆粒產生新的擺盪型態,其特性與前人所述之擺盪有所不同;滾筒中顆粒隨福祿數與填充量不同而有不同之流動型態,實驗尺度比(D/d)的改變將影響相位圖的變化,而含水量之變化猶如降低尺度比,使相位圖流況區域產生變化。


    Granular flow which was extensively applied in many field. A dominant aspect of granular flows is flow in thin surface layers while an understanding of the dynamics of dry granular surface flow has begun to emerge, the case of flow when air is replaced by a liquid is largely unexplored. This study discussed the granular flow effect of the interstitial fluid in the drum. Experiments were performed using particle tracking velocimetry(PTV) in a quasi-two-dimensional rotating tumbler to measure the velocity field within the flowing layer of monodisperse spherical particles, for a range of Froude numbers,fluid densities and fluid viscosities. The angle of repose with a liquid interstitial fluid are generally larger than for the dry system under similar conditions. At higher liquid content, lubrication forces play a role to general a new flowing regime in the drum; The dry granular in the drum have six flowing regimes with different Froude number and filling ratio. In this study compared the phase diagram with dry and wet system.

    摘要 I ABSTRACT II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 XI 符號表 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 乾、濕顆粒之比較 3 1.4 論文架構 5 第二章 文獻回顧 6 2.1 土石流相關理論 6 2.2 顆粒流的實驗配置 7 2.3 顆粒流於滾筒中之研究 8 2.3.1 乾顆粒滾筒 8 2.3.2 滾筒中含液體之顆粒流 10 2.4 滾筒中顆粒的量測方法 13 2.5 滾筒流況分析 14 2.6 徑向速度剖面之分析 15 2.7 剪應變率(SHEAR RATE) 15 2.8 粒子溫度(GRANULAR TEMPERATURE) 17 2.9 黏性系統中之特性描述參數 17 2.10 兩顆粒間之液橋力 20 第三章 實驗設備和步驟 21 3.1 實驗設備 21 3.2 實驗步驟 27 3.3 粒子影像分析 31 第四章 實驗結果分析 36 4.1 滾動流況運動(ROLLING MOTION) 36 4.1.1 滾動流況下之流動層厚度 38 4.1.2 滾動流況下之動態安息角 40 4.1.3 滾動流況之速度分佈 41 4.1.4 邊壁滑脫速度之分析 46 4.1.5 滾動流況之特性整合 49 4.2 湧波流況運動(CASCADING MOTION) 49 4.2.1 湧波之流動表面剖面 52 4.2.2 湧波之流動速度剖面 56 4.3 滾動後之擺盪運動(SLUMPING MOTION) 60 4.4 濕顆粒之運動特性 68 4.5 滾筒中顆粒運動型態分類(PHASE DIAGRAM) 69 4. 5.1 滾筒乾顆粒運動型態分類 69 4.5.2 滾筒濕顆粒運動型態分類 73 第五章 結論與建議 77 5.1 結論 77 5.2 建議 78 參考文獻 79 附錄 一 83 附錄 二 87

    1. 李璟芳(2006),「滾筒中均勻顆粒流動現象之實驗研究」,第十五屆水利工程研討會,U1-9頁。
    2. 周漢祥(2005),「圓柱堆變形破壞之輸送帶實驗分析」,碩士論文,國立中央大學土木工程研究所碩士論文,中壢。
    3. 彭子軒(2002),「慢顆粒流之輸送帶實驗與影像分析」,碩士論文,國立中央大學土木工程研究所碩士論文,中壢。
    4. 詹錢登、陳晉琪 (1997),「應用直立旋轉式水槽研究土石流體之流動現象」,中華水土保持學報,第28卷,第2期,第157-164頁。
    5. Boateng, A.A, (1997) “Boundary Layer Modeling of Granular Flow in The Transverse of a Partially Filled Rotating Cylinder”, Int. J. Multiphase Flow, Vol.24, No.3, pp.499-521.
    6. Boateng, A.A, P.V. Barr, (1997) “Granular flow behaviour in the transverse plane of a partially filled rotating cylinder”, J. Fluid Mech, Vol.330, pp.233- 249.
    7. Blumberg. W., (1995)“Selektive Konvektions-und Kontakttrocknung im Drehrohr,” PhD Thesis, VDI Verlag, Dusseldorf, Germany.
    8. Bagnold, R. A. (1954),“Experiments on a gravity free dispersion of large solid spheres in a newtonian fluid under shear.“ Proceedings of Royal Soiety in London, A225, pp. 49-63.
    9. Baxter, B. P. Behringer, T. Faggert, and G. A. Johnson (1989), ‘‘Patternformation in flowing sand,’’ Phys. Rev. Lett. 62, 2825 ~1989.
    10. Capart, H, D.L. Young, and Y. Zech, (2002) “Voronoi imaging methods for the measurement of granular flows.” Experiments in Fluids, Vol.32, pp.121-135.
    11. Ding ,Y. L., R. N. Forster, J. P. K. Seville,and D. J. Parker (2001), “Solids motion in rolling mode: rotating drums operated at low to medium rotational speeds”, Chemical Engineering Science, Vol.56, pp.1769-1780.
    12. Ding ,Y. L., R. Forster, J.P.K. Seville,and D.J. Parker(2002), “Granular motion in rotating drums: bed turnover time and slumping–rolling transition”, Powder Technology, Vol.124, pp.18-27.
    13. Dury, C.M., and Ristow, G.H.(1998), “Boundary effects on the angle of repose in rotating cylinders.”Physical Review E, Vol. 57, No.4, pp. 4491-4496.
    14. Fe’lix, G., V. Falk,and U. D’Ortona, (2002) “Segregation of dry granular material in rotating drum:experimental study of the flowing zone thickness”, Powder Technology, Vol.128, pp.314-319.
    15. Henein, H., J. K. Brimacombe,and A.P. Watkinson, (1983) “Experimental study of transverse bed motion in rotary kilns”, Metallurgical Transactions, Vol.14B, pp.191-205.
    16. Iverson, R.M., and Vallance, J.W.(2001), “New view of granular mass flows.” Journal of Geology, Vol. 29, No.2, pp. 115-118.
    17. Ingram, A., J.P.K. Seville, D.J. Parker, X. Fan, R.G. Forster(2005), “Axial and radial dispersion in rolling mode rotating drums”, Powder Technology ,Vol.158, pp. 76-91.
    18. Jenkins, J.T., and Hanes, D.M. (1998), “Collisional sheet-flow of sediment driven by a turbulent fluid”, J. Fluid Mech, Vol. 370, pp. 29-52.
    19. Jain, Nitin., J. M. Ottino and R. M. Lueptow (2004) “Effect of interstitial fluid on a granular flowing layer”,J. Fluid Mech. vol. 508, pp.23-44.
    20. Kuo, H.P., R.C. Hsu, Y.C. Hsiao,(2005)” Investigation of axial segregation in a rotating drum”, Powder technology, Vol.153, pp.196-203.
    21. Khakhar, D. V., J. J. McCarthy, Troy Shinbrot, and J. M. Ottino, (1997) “Transverse flow and mixing of granular materials in a rotating cylinder”, Phys. Fluids , Vol.9(1), pp.31-43.
    22. Khakhar, D. V. and Ashish V. Orpe, (2001) “Surface granular flows: Two related examples”, Advances in Complex Systems, Vol. 4, No.4, pp. 407-417
    23. Liu, Xiao Yan., E. Specht, J. Mellmann, (2005) “Experimental study of the lower and upper angles of repose of granular materials in rotating drums”, Powder Technology, Vol.154, pp.125-131.
    24. Longo, S, (2002) “Grain shear flow in a rotating drum”, Experiments in Fluid, Vol.32, pp.313-325.
    25. Midi, G. D. R, (2004) “On dense granular flows”, Eur. Phys. J. E, Vol.14, pp.341-365.
    26. Mellmann, J., (2001) “transverse motion of solids in rotating cylinders”, Powder Technology, Vol.118, pp.251-270.
    27. Mellmann, J., E. Specht and Xiaoyan Liu, (2004) “Prediction of Rolling Bed Motion in Rotating Cylinders”, AIChE Journal, Vol.50, No.11, pp.2783-2793.
    28. Nase, S.T. W.L. Vargas, A.A. Abatan, and J.J. McCarthy,(2001) “Discrete characterization tools for cohesive granular materials.” Powder Technol. 116, 214.
    29. Nakagawa, M., S.A. Altobelli, A. Caprihan, E. Fukushima, (1993) “Non invasive measurements of granular flows by magnetic resonance imaging”, Powders and Grains, Vol.93, Balkema, Rotterdam.
    30. Ottino, J. M., and D.V. Khakhar, (2000) “Mixing and segregation of granular materials”, Annu. Rev. Fluid Mech, Vol.32, pp.55-91.
    31. Orpe, A.V., and D. V. Khakhar, (2001) “Scaling Relations for Granular Flow in Quasi-Two-Dimensional Rotating Cylinders”, Phys. Rev. E, Vol.64, pp.031302.1-031302.13.
    32. Rajchenbach, E. Clement, J. Duran (1993),“Experimental study of bidimensional models of sand”, International Journal of Modern Physics,Vol.7, No.9 & 10, pp.1789-1798.
    33. Savage, S.B. and Hutter, K.(1989) , “The motion of a finite mass of granular material down a rough incline,” Journal of Fluid Mechanics, Vol. 1999, pp. 177-215.
    34. Tegzes, T. Vicsek, P. Schiffer(2002),” Avalanche dynamics in wet granular materials”, Physical Review Letters 89 .
    35. Wightman, C., Fernando J Muzzio (1998), “Mixing of granular material in a drum mixer undergoing rotational and rocking motions I.Uniform particles”, Powder Technology, Vol.98, pp.113-124.

    QR CODE
    :::