| 研究生: |
王昱凱 Yu-Kai Wang |
|---|---|
| 論文名稱: |
固體再生燃料衍生混燒灰渣膨脹潛勢研究暨再利用分類指引建立 Investigation of Expansion Potential and Development of Reuse Classification Guidelines for Co-Combustion Ash Derived from Solid Recovered Fuel |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 混燒灰渣 、固體再生燃料 、膨脹潛勢 、預處理 、再利用分類 |
| 外文關鍵詞: | co-combustion ash, solid recovered fuel, expansion potential, pretreatment, reuse classification |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為實現廢棄物資源化及應對氣候變遷造成的環境議題,世界各國陸續提出廢棄物再利用等低碳燃料相關政策,而由可適燃性廢棄物製造產出之固體再生燃料(Solid Recovered Fuel, SRF)便因運而生,這類廢棄物包含民生廢棄物,如塑膠、橡膠、木材及紙張等,再生燃料技術可有效降低傳統化石燃料需求且因低碳排而備受關注。然則若干燃料組成因含有鋁箔物質,且CFB鍋爐燃燒過程會採用石灰石作固硫劑等因素,故SRF和燃煤於CFB鍋爐進行混燒作業衍生之混燒飛灰殘留鋁金屬、游離氧化鈣等成分,使得其再利用水泥系材料中出現高度膨脹現象。
本研究旨在探討SRF衍生混燒灰渣的材料特性及再利用可行性,尤其針對具膨脹潛能的混燒灰渣,研究其內部膨脹潛勢影響及建立檢測流程,透過加濕方式進行安定化並結合水泥固化製程發展出一套系統化之混燒灰渣再利用分類指引。研究結果說明定性分析除可判斷含鋁可能外,亦能經由混合液溫度變化初步研判含f-CaO可能,結合定量分析(鋁金屬、游離氧化鈣)可使整套檢測更有效率。膨脹因子於不同狀況下影響層面及程度略有差異,在含鋁金屬前提下,若游離氧化鈣大於2%有漿體提早失去塑性疑慮,此時鋁金屬產氫將不易釋放進而加劇膨脹危害。加濕飛灰方式所需成本及設備需求低且頗具安定化效益,但面對鋁含量大於0.5%之混燒飛灰效果不彰。再利用產品方面,水泥固化製程顯示出混燒灰於海事工程應用之可行性,其中破碎材製程產出之再生粒料不僅物理性質良好且能根據破碎方式控制粒料尺寸,作為工程填築材料展現良好潛力,而原本不建議之再利用方式,再經過安定化程序後,部分混燒灰渣也得以對其作應用。
最後,基於混燒灰渣的特性,包括膨脹潛勢檢測及容許含量、加濕安定化程序及再利用方式等,進一步提出新穎的混燒灰渣再利用分類指引,包括漿料材製程、塑性材製程、破碎材製程及輔助膠凝材的適用條件,為混燒灰渣的去化和再利用提供更多元之應用途徑。
To promote waste resource utilization and address environmental challenges associated with climate change, countries around the world have introduced low-carbon fuel policies that emphasize waste reuse. Solid Recovered Fuel (SRF), produced from combustible waste such as plastics, rubber, wood, and paper, has garnered significant attention for its ability to reduce dependence on traditional fossil fuels and lower carbon emissions. However, certain SRF compositions contain aluminum foil, and the combustion process in circulating fluid-ized bed (CFB) boilers often involves the use of limestone as a desulfurizing agent. Conse-quently, the co-combustion of SRF and coal in CFB boilers produces fly ash that contains metallic aluminum and free calcium oxide (f-CaO), which can lead to significant expansion when reused in cement-based materials.
This study investigates the material characteristics and reuse potential of co-combustion ash derived from SRF, with a particular focus on ash exhibiting expansion potential. A detec-tion protocol was developed to assess internal expansion risks, and a systematic classification approach for reuse was proposed through stabilization by hydration and cement solidification processes. The results indicate that qualitative analysis can preliminarily detect the presence of aluminum and estimate the likelihood of f-CaO based on temperature changes in the mix-ing solution. When combined with quantitative measurements of metallic aluminum and f-CaO, the overall detection process becomes more effective and efficient. The expansion behavior varies under different conditions. In cases where aluminum is present and the f-CaO content exceeds 2%, the slurry may lose plasticity prematurely, impeding hydrogen release from the aluminum and thereby intensifying expansion issues. Hydration treatment is a low-cost and effective method for stabilization; however, its performance diminishes when the aluminum content exceeds 0.5%. In terms of reuse applications, the cement solidification process demonstrates the feasibility of utilizing co-combustion ash in maritime engineering. Additionally, the production of recycled aggregates through crushing processes yields mate-rials with favorable physical properties. The particle size of these aggregates can be con-trolled based on the crushing method, making them suitable for use as construction fill. Some previously unsuitable reuse methods may become viable after stabilization.
Finally, based on the characteristics of co-combustion ash—including expansion risk detection and content thresholds, hydration stabilization, and reuse strategies—this study proposes a novel classification guideline for the reuse of SRF-derived co-combustion ash. The guideline outlines appropriate conditions for slurry-based materials, plastic-like materi-als, crushed aggregates, and supplementary cementitious materials, offering diversified pathways for the treatment and resourceful reuse of co-combustion ash.
Feihu Li et al., “ Characterization of Fly Ash from Waste-to-Energy and Circulating Fluidized Bed Combustion Processes,” Energy & Fuels, 2006. 20: p. 1411-1417.
Wagland et al.,“ Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor,” Waste Management, 2011. 31(6): p. 1176-1183.
Wu, H., P. Glarborg, F.J. Frandsen, K. Dam-Johansen, P.A. Jensen, and B. Sander,“ Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor – General combustion and ash behaviour,” Fuel, 2011. 90(5): p. 1980-1991.
Saffarzadeh, A., N. Arumugam, and T. Shimaoka,“ Aluminum and aluminum alloys in municipal solid waste incineration (MSWI) bottom ash: A potential source for the production of hydrogen gas,” International Journal of Hydrogen Energy, 2016. 41(2): p. 820-831.
Aubert, J.E., B. Husson, and N. Sarramone,“ Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement: Part 1: Processing and characterization of MSWI fly ash,” Journal of Hazardous Materials, 2006. 136(3): p. 624-631.
吳明富, “ 含鋁金屬混燒飛灰膨脹特性研究暨預處理穩定化方法評估,” 中央大學博士論文,2023.
劉錦霖, “ 混燒飛灰經固化製程再利用於工程回填材料之試驗評估,” 中央大學碩士論文, 2024.
行政院環境保護署, 「固體再生燃料製造技術指引與品質規範」, Editor. 2025.
章裕民,“ 流體化床燃燒脫硫技術, ” 工業污染防治, 1989. 第30期: p. 203-219.
行政院環境保護署, 「SRF白皮書」, Editor. (2025).
朱尚文, “ 循環流化床固硫灰特性及做水泥混合材應用的研究,中國建築材料科學研究總院碩士論文.2011.
He, P., X. Zhang, H. Chen, and Y. Zhang,“ Waste-to-resource strategies for the use of circulating fluidized bed fly ash in construction materials: A mini review,” Powder Technology, 2021. 393: p. 773-785.
經濟部產業發展署, 區域能資源整合循環回收利用示範輔導計畫, (2024).
Coker, E.N. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry. (Year) of Conference.
Tian, X., F. Rao, C.A. León-Patiño, and S. Song,“ Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes,” Chemosphere, 2020. 240: p. 124986.
Tian, Y., N.J. Themelis, A.C. Bourtsalas, S. Kawashima, and Y. Gorokhovich,“ Systematic Study of the Formation and Chemical/mineral Composition of Waste-to-energy (WTE) Fly Ash,” Materials Chemistry and Physics, 2023. 293: p. 126849.
Yubo Sun et al., “ Characterization, pre-treatment, and potential applications of fine MSWI bottom ash as a supplementary cementitious material,” Construction and Building Materials, 2024. 421:p. 135769.
楊士鋒, “ 流體化床鍋爐燃煤飛灰與混燒飛灰卜作嵐特性比較之研究-以紡織污泥為例,” 中央大學碩士論文,2019.
Xuan, D. and C.S. Poon,“ Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment,” Journal of Hazardous Materials, 2018. 344: p. 73-80.
Panyang He et al.,“ Waste-to-resource strategies for the use of circulating fluidized bed fly ash in construction materials:Aminireview,” PowderTechnology, 2021. 393: p. 773–785.
Xuemei Chen et al.,“ Investigation of expansion properties of cement paste with circulating fluidized bed fly ash,” Construction and Building Materials, 2017. 157: p. 1154–1162.
Mingkai Zhou et al.,“ Study on hydration characteristics of circulating fluidized bed combustion fly ash (CFBCA),” Construction and Building Materials, 2020. 251: p. 118993.
Wenhuan Liu et al.,“ Rheology, mechanics, microstructure and durability of low-carbon cementitious materials based on circulating fluidized bed fly ash: A comprehensive review,” Construction and Building Materials, 2024. 411: p. 134688.
林志棟,“ 氣冷轉爐石添加飛灰、底灰應用於基底層材料之研究期末報告, 國立中央大學土木工程研究所.2001.
D. Zheng, D. Wang, H. Cui, X. Chen,“ Hydration characteristics of cement with high volume circulating fluidized bed fly ash,” Constr. Build, 2023: p. 380.
曾煜翔, “ 混燒飛灰中鋁金屬含量檢測方法建立暨濕式處理成效評估之研究,” 中央大學碩士論文,2023.
中國人民共和國國家知識產權局, 一型水泥中游離氧化鈣的測定方法. 2014.
Lee, H.-S., H.-S. Lim, and M.A. Ismail,“ Quantitative evaluation of free CaO in electric furnace slag using the ethylene glycol method,” Construction and Building Materials, 2017. 131: p. 676-681.
畢文彦, 水泥礦物游離氧化鈣含量測定方法的評價及探討. 2008.
NEuropean Committee for Standardization. (2017). Method of testing fly ash - Part 1: Determination of free calcium oxide content(EN 451-1). Brussels: CEN.
Saikia, N., Mertens, G., Balen, K. V., Elsen, J., Gerven, T. V., and Vandecasteele, C., “Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar.” Construction and Building Materials, 2015. 96: p.76-85.
Xuexue Wang, Aimin Li , and Zhikun Zhang,“ The effects of water washing on cement-based stabilization of MWSI fly ash,” Procedia Environmental Sciences, 2016. 31: p.440-446.
Zunchao Ren et al.,“ Study on hydration and heavy metal leaching of washed MSWI FA as a green cementitious material,” Journal of Building Engineering, 2024. 97: p.110636.
一般財団法人石炭エネルギーセンター, 石炭灰混合材料有効利用ガイドラ イン(統合改訂版). 2018.
Soma、Mamoru, H.A.M.O.S., 石炭灰高リサイクル破砕材の適用について. 2016.
台灣電力公司, 煤灰海事工程應用手冊. 2021.
Mingchen Xu et al.,“ Solidification/stabilization of municipal solid waste incineration (MSWI) fly ash during fired brick manufacturing by pelleting confinement and phase transformation,” Construction and Building Materials, 2025. 463: p.140087.
CNS 3036, 「混凝土用燃煤飛灰及未煆燒或煆燒天然卜作嵐材料」. (2021), 中華民國國家標準(CNS).
Meng Gao et al.,“ Physicochemical performance and hydration mechanism of alkali activated GGBS-steel slag-stockpiled CFB fly ash cementitious composites,” Construction and Building Materials, 2025. 458: p.139635.