跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳喬蓁
Ciao-Jhen Wu
論文名稱: 應用在> W頻段(>110GHz)覆晶式具超高飽和電流-頻寬乘積的近彈道傳輸光偵測器
Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 62
中文關鍵詞: 光偵測器覆晶結合
外文關鍵詞: photodiode, flip chip bonding
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對1.55μm波長的光纖通訊系統中接收端前級元件光二極體之製作與研究,在元件幾何結構上摻入一層P型的電場承受層,因此可讓內部的電子速度維持在over shoot velocity,克服P-I-N 光偵測器與傳統單載子傳輸光偵測器的缺點,進而達到高速、高響應度、高頻寬的表現。並且利用覆晶結合技術與附有金柱基的氮化鋁基板結合,讓主動區面積28?m2的元件能夠承受更高的飽和電流(13.6mA),而主動區面積144?m2預估擁有創新紀錄的飽和電流-頻寬之乘積(6660mA-GHz, 37mA, 180GHz)。


    In this study, we demonstrate near-ballistic uni-traveling carrier photodiodes (NBUTC-PDs) with an optimized flip-chip bonding structure, wide 3-dB optical-to-electrical (O-E) bandwidth (>110GHz), and extremely high saturation current-bandwidth product performance (37mA, >110GHz, >4070mA-GHz). NBUTC-PDs with different active areas (28 to 144?m2) are fabricated and flip-chip bonded with co-planar waveguides (CPWs) onto an AlN based pedestal. This improves the high-power performance without seriously sacrificing the speed performance. In addition, the saturation-current measurement results indicate that after inserting a center bonding pad on the pedestal (located below the p-metal of the NBUTC-PD for good heat-sinking), the saturation current performance of the device becomes much higher than that of the control device (without the center bonding pad), especially for the device with a small active area (28?m2). The measurement and modeling results indicate that a device with a 144?m2 active area and optimized flip-chip bonding pedestal can achieve an extremely high saturation current-bandwidth product (6660mA-GHz, 37mA, 180GHz).

    Abstract .............................i 摘要 .............................ii 誌謝 .............................iii 目錄 .............................v 圖目錄 .............................vii 表目錄 .............................ix 第一章 序論 1 §1.1 光纖通訊之發展趨勢.............................1 §1.2 光偵測器之發展與應用 .........................7 §1.3覆晶結合技術之發展趨勢 ......................11 §1.4論文動機與架構 ......................................14 第二章 彈道傳輸單載子光偵測器設計 ..............15 §2.1傳統P-I-N光偵測器工作原理 .................15 §2.2單載子傳輸光偵測器工作原理 ...............17 §2.3 彈道傳輸單載子光偵測器之磊晶層設計 ......21 第三章 彈道傳輸單載子光偵測器設計 ...............24 §3.1近彈道傳輸單載子光偵測器之製程 ...............24 第四章 彈道傳輸單載子光偵測器之量測與結果討論...........36 § 4.1 Heterodyne-Beating 量測系統之架設 ...........36 § 4.2 頻寬量測結果 ......................................37 § 4.3 高功率產生量測結果 .............................42 第五章 結論與未來研究方向 .............................45 參考文獻 ...............................................47

    [1] Y.-S. Wu, J.-W. Shi, J.-Y. Wu, F.-H. Huang, Y.-J. Chan, Y.-L. Huang, and R. Xuan “High Performance Evanescently Edge Coupled Photodiodes with Partially p-Doped Photo-absorption Layer at 1.55mm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 878-880, Apr. 2005.
    [2] Mario Weiß, Mathieu Huchard, Andreas Stöhr, Benoît Charbonnier, Sascha Fedderwitz, and Dieter Stefan Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s” Journal Of Lightwave Technology, vol. 26, no. 15, pp. 2424-2429, Auguest 1 2008.
    [3] J. J. Vegas Olmos, Toshiaki Kuri, and Ken-Ichi Kitayama, “60-GHz-Band 155-Mb/s and 1.5-Gb/s Baseband Time-Slotted Full-Duplex Radio-Over-Fiber Access Network,” IEEE Photon. Technol. Lett., vol. 20, no. 8, pp. 617-619, Apr. 15 2008.
    [4] A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, “120-GHz-Band Millimeter-Wave Photonic Wireless Link for 10-Gb/s Data Transmission,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1937-1944, May. 2006.
    [5] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul. 1999.
    [6] J.-W. Shi, H.-C. Hsu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, Chi-Kuang Sun, and Ci-Liang Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-speed and High-power Performance” IEEE Photon. Technol. Lett, vol. 17, pp. 1722-1724, Aug. 2005.
    [7] T. H. Stievater and K. J. Williams, “Thermally Induced Nonlinearities in High-Speed p-i-n Photodetectors,” IEEE Photon. Technol. Lett, vol. 16, pp. 239-241, Jan. 2004.
    [8] N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes, Jr., and J. C. Campbell, “High Power Photodiode Wafer Bonded to Si Using Au With Improved Responsivity and Output Power” IEEE Photon. Technol. Lett, vol. 18, pp. 2526-2528, Dec. 2006.
    [9] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP-InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 709-727, Jul./Aug. 2004.
    [10] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic generation of continuous THz wave using uni-traveling-carrier photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec. 2005.
    [11] J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, High-Speed, High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., vol. 17, pp. 1929-1931, Sep. 2005.
    [12] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band," IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
    [13] Y.-S. Wu, J.-W. Shi, and P.-H. Chiu “Analytical Modeling of a High-Performance Near-Ballistic Uni-Traveling-Carrier Photodiode at a 1.55?m Wavelength,” IEEE Photon. Technol. Lett., vol. 18, pp. 938-940, Apr. 2006.
    [14] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-Saturation-Current Charge-Compensated InGaAs-InP Uni-Traveling-Carrier Photodiode,” IEEE Photon. Technol. Lett., vol. 16, pp. 864-866, Mar. 2004.
    [15] Ning Duan, Xin Wang, Ning Li, Han-Din Liu, and Joe C. Campbell “ThermalAnalysis of High-Power InGaAs–InP Photodiodes,” IEEE Journal Of Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec. 2006.
    [16] Jo Das, Herman Oprins, Hangfeng Ji, Andrei Sarua, Wouter Ruythooren, Joff Derluyn, Martin Kuball, Marianne Germain, and Gustaaf Borghs “Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design,” IEEE Transactions On Electron Device, vol. 53, no. 11, pp. 2696-2700, Nov. 2006.
    [17] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition.
    [18] Donald A. Neamen“Semiconductor physics & Devices Basic Principle,” second edition.
    [19] Hiroshi Ito, Satoshi Kodama, Yoshifumi Muramoto, Tomofumi Furuta, Tadao Nagatsuma, and Tadao Ishibashi, “High-Speed and High-Output InP–InGaAs Unitraveling-Carrier Photodiodes,” IEEE J. Quantum Electron., vol. 10, pp. 709–727, July/August 2004.
    [20] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaA Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar. 1998.
    [21] T. Ishibashi, “Nonequilibrium Electron Transport in HBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2595 - 2605, Nov. 2001.
    [22] T. Ishibashi and Y. Yamauchi, “A Possible Near-Ballistic Collection in an AlGaAs/GaAs HBT with a Modified Collector Structure,” IEEE Trans. on Electron Devices, vol. 35, pp. 401-404, April. 1988.

    QR CODE
    :::